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ABSTRACT
There is a large amount of textual data on the Web and
in Wikipedia, where mentions of entities (such as Gandhi)
are annotated with a link to the disambiguated entity (such
as M. K. Gandhi). Such annotation may have been done
manually (as in Wikipedia) or can be done using named
entity recognition/disambiguation techniques. Such an an-
notated corpus allows queries to return entities, instead of
documents. Entity ranking queries retrieve entities that
are related to keywords in the query and belong to a given
type/category specified in the query; entity ranking has been
an active area of research in the past few years. More re-
cently, there have been extensions to allow entity-relationship
queries, which allow specification of multiple sets of entities
as well as relationships between them.

In this paper we address the problem of entity ranking
(“near”) queries and entity-relationship queries on the Wiki-
pedia corpus. We first present an extended graph model
which combines the power of graph models used earlier for
structured/semi-structured data, with information from tex-
tual data. Based on this model, we show how to specify
entity and entity-relationship queries, and defined scoring
methods for ranking answers. Finally, we provide efficient
algorithms for answering such queries, exploiting a space ef-
ficient in-memory graph structure. A performance compari-
son with the ERQ system proposed earlier shows significant
improvement in answer quality for most queries, while also
handling a much larger set of entity types.

1. INTRODUCTION
Over the last decade, there has been a lot of work on key-

word search over structured and semi-structured data. Some
of this body of work focuses on finding a closely connected
set of data items containing specified keywords, for example
[4, 10, 1, 9]. In contrast ObjectRank [2] extended the idea
of PageRank to compute keyword specific ranks for objects
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in a connected graph. A similar idea of near queries was
also mentioned briefly in [11]. All the above work focused
primarily on structured data.

In recent years, search over annotated text data has re-
ceived increasing attention. This work is motivated in part
by the availability of annotated text in Wikipedia, and by
the availability of text annotators for named entity recog-
nition/disambiguation, such as [13, 19], which can work on
web scale data. Such annotations add semantic links to text,
identifying mentions of entities in text, and organizing the
entities into a type or category hierarchy. For example, the
occurrence of the words “Kleinberg” in text may be identi-
fied as a mention of the person entity “Jon Kleinberg”.

Suppose the annotation on a text corpus have identified
occurrences of person entities (amongst other types of enti-
ties). We can then run queries such as “find persons near
Web search”; the basic idea is to find mentions of entities
of type person close to the words Web and search, and ag-
gregate over multiple such occurrences to rank persons in
terms of their proximity to the words web and search. Work
in this area includes [5, 6, 8] and [7]; see Section 6 for more
details.

In general, entity ranking involves finding specific entities
as answers to queries. The user submits the search keywords
and also the target type of the desired answers. (We use the
words type and category interchangeably, since both terms
have been widely used in prior work.) Some examples of such
queries as obtained from the INEX 2008 track are: “Find a
list of musicians who appeared in at least one of the Blues
Brothers movies”, and “Find a list of the state capitals of
the United States of America”.

Wikipedia is often used as the source of entities, and the
YAGO category hierarchy [18] (which provides a cleaned up
version of Wikipedia categories combined with the Word-
Net ontology) is used to associate entities with a hierarchy
of categories. Several systems, such as Yago, also extract
relationships from unstructured information and represent
them, for example, using RDF or even relational schemas.
Structured queries are then run on the structured data, by
systems such as Naga [12], [3] and [17]. However, the num-
ber of extracted relationships are limited, and the integra-
tion of unstructured and structured information is limited.
See Section 6 for more details.

The ERQ system [14, 15] has worked on more complex
queries called entity-relationship queries, that can look for
relationships between entities. Queries can specify entities



in a manner similar to entity ranking queries, but addi-
tionally specify desired relationships through keywords. As
an example from [15], a query can ask for “persons related
to Stanford who have founded companies in silicon valley”;
more formally the query asks for “person entities near Stan-
ford that are related to company entities near silicon valley
by the term founded”.

The systems mentioned above exploit entity annotations,
but do not exploit the graph structure of the underlying
data. For example, they cannot answer a query of the form
“find universities near Nobel prize” unless there are men-
tions of the term Nobel prize near the university name. If
person entities related to Nobel prize, are also related to
a university entity, we would consider the university to be
related to Nobel prize. Such transfer of prestige does oc-
cur in graph based systems such as Object Rank [2] and
BANKS [11], but those systems do not support nodes con-
taining annotated text. Our goal is to have a unified model
that handles both graph information and annotated textual
data.

As a first attempt to address the issue, we treated the
Wikipedia corpus as a graph, with documents as nodes and
inter-page links as edges, and ran the near query implemen-
tation of [11] on the graph. However, the results were very
disappointing; the main reasons were (a) the graph is very
densely connected and (b) it makes no sense to consider a
link at the end of a long Wikipedia page to be related to a
word that occurs early in the page.

To address the above problem, we introduce the notion
of a graph where nodes contain words and edges, occurring
at specified offsets. When we traverse the graph to answer
a query, we take the offsets into account, in a way that we
describe later in the paper. This extended graph model is
well suited to Wikipedia data, to annotated Web pages, as
well as to traditional structured data, and can be used in
systems that integrate different types of data.

We then show how to use the extended graph model to de-
fine scoring models for entity and entity-relationship queries,
and to derive efficient algorithms for answering such queries.

The contributions of this paper are as follows:

1. We present (in Section 2) a new graph model that al-
lows nodes to contain terms as well as links at specified
offsets. This model combines the best features of the
graph model, and the document models, both of which
have been widely used in the past.

2. We present (in Section 3) new methods for scoring an-
swers to near queries taking the new graph model into
account.

Unlike earlier work on entity ranking and entity-rela-
tionship queries, our model does not require the user to
provide a precise specification of the desired type of the
results; instead, we allow type-keywords to describe
the desired type. Answers are scored based on how
well the type matches the given type-keywords, and
the entity matches the remaining keywords.

3. We then present (in Section 4) a scoring model for
entity-relationship queries, again based on the extended
graph model.

We also present efficient algorithms for answering entity-
relationship queries in the above graph model.

4. We present (in Section 5) several optimizations im-
prove result quality.

5. We present a performance study (in Section 7) which
shows that our techniques give good result quality, out-
performing [15] on most queries.

2. DATA MODEL
We now describe our extended graph model, and then

outline how semi-structured datasets from Wikipedia and
YAGO [18] can be represented in the extended graph model.

2.1 Extended Graph Model
The basic data model we use is a labelled directed multi-

graph G = (V, E), where V is a set of vertices and E a
multiset of edges. Our multigraph model has two further
extensions to better handle documents.

1. Vertices can have an associated text description, mod-
eled as a document; such vertices have an associated
set of (term, offset) pairs. The offset denotes the rel-
ative position of the term from the start of the docu-
ment. Vertices that do not represent documents can
still have text descriptions, with all terms assumed to
be at offset 0.

Vertices can have associated labels; for example, when
modeling Wikipedia, these labels can be used to distin-
guish regular entity nodes from category nodes. Ver-
tices can also store other information, for example a
node prestige may be associated with each node.

2. Edges are directed. Edges can represent a hyperlink
from one document to another; each such edge e =
v1 → v2 has an associated offset e.offset which is an
offset within the document represented by v1 where
the hyperlink occurs. There can be multiple edges
from one vertex to another, at different offsets, which
is why we use a multigraph model. Edges that do not
represent hyperlinks are assumed to have an offset of
0.

Edges can also have associated labels; for example,
when modeling Wikipedia data, edge labels can be
used to distinguish edges linking a node to its cat-
egory, from edges linking a node to a non-category
node. Edges can also have an associated edge weight.

We call the above graph model as the extended graph model.
The extended graph model only stores nodes and edges

with offset information. The mapping from terms to nodes
(including offset information for term occurrences) is stored
separately, in a full text Lucene index. The term frequency
(TF) of each term in a document can also be stored in
Lucene; for example, terms in a document title can be given
a higher TF. The node prestige of a node can also be used to
boost the score of the corresponding document in Lucene.

2.2 Representing Wikipedia Data
In Wikipedia, every entity is stored as a separate docu-

ment (a Wikipedia page) also called articles. Wikipedia ar-
ticles are all linked or cross-referenced. These articles are
categorized according to the type of entity it represents.
Wikipedia provides us with category types, into which an
author could categorize the pages.



In our model, each Wikipedia page/document represents
an entity, which is the basic unit of our search and thus, it
is represented by a node in the graph. There are two types
of nodes in our model:

• category nodes (representing Wikipedia categories)

• entity nodes (representing all other Wikipedia pages)

Each vertex has a label identifying whether it is a category
vertex or a entity vertex. In addition, each vertex has a sepa-
rate label denoting its page-rank, pre-computed as described
later. If we integrate other Web pages into our graph, we
could use a new node type, web-page node, to represent such
Web pages,

Labels are also associated with the edges to identify the
edge type; the different types of edges in the graph are as
follows.

1. Document to entity edges, which link from a document
to entities referenced in the document. Each entity
has an associated document in Wikipedia. The offset
associated with such an edge is the token offset of the
start of the link in the document.

2. Edges denoting the ’belongs to’ relation from an entity
to a category The offset of such edges is 0.

3. Edges denoting category to category hierarchy; the off-
set of such edges in 0.

Since, a single data graph is built for both entities and cat-
egories different parts of the graph can be traversed based
on the edge type.

Edges linking entities to categories that denote the “be-
longs to” relationship are treated specially for the purpose
of ranking.

As in [4, 11], the node prestige of a node is a measure of its
importance disregarding query keywords, and is computed
using a biased PageRank computation with edge weights,
as described in [11], with teleport probability of 0.3. Offset
information is ignored, and all edges in the original graph
are treated as being of unit weight.

As in [11], for each directed edge u → v in the original
graph, we introduce a reverse edge v → u, if such an edge is
not already present. Each reverse edge is assumed to be at
offset 0, and its weight is defined as the indegree of v.

The Wikipedia category hierarchy has a number of prob-
lems, such as cycles, and improper nesting of categories. For
example, Jerry Yang, the founder of Yahoo! is in the cate-
gory Yahoo!, and thus indirectly (after a few more levels in
the hierarchy) under the category Companies. Based on the
hierarchy, we expect each entity to belong to higher level cat-
egories also. However, we would certainly not expect Jerry
Yang to be categorized as a company.

To avoid these problems we used the category hierarchy of
the YAGO ontology [18]. YAGO includes all Wikipedia en-
tities, as well as conceptual categories from Wikipedia, but
replaces the Wikipedia category hierarchy by the WordNet
hierarchy, suitably integrated with the Wikipedia categories
(which now form the leaf level of the category hierarchy).
This not only improved the quality of results, linking entities
only to relevant categories in most cases, but also reduced
the execution time significantly.

3. NEAR QUERIES
In this section, we first describe our model for near queries,

and then describe how answers are scored using our extended
graph model.

3.1 Near Query Model
A near query q can be specified as

find C near (K)

Where C is one or more keywords specifying the target en-
tity type for the answer, and K is a set of keywords; phrases
enclosed in double quotes can also be used in place of key-
words to ensure that the keywords appear together in the
order specified.

Example. Consider a user searching for the list of movies
in which actor Robert De Niro has played a part and is di-
rected by famous Hollywood director Martin Scorsese. The
near query formulation of this query will be:

find films near (directed “martin scorsese” “robert de
niro”)

Here the keyword films gives the type information C, and
the set K is equal to {directed, martin scorsese, robert de
niro}.

Near queries using the above syntax were supported in
the BANKS system [11]. However, as mentioned earlier,
when we attempted to use the BANKS near query model
on the Wikipedia corpus, with Wikipedia pages modeled as
nodes, the performance was very poor; the reason is that
nodes have many keywords and many links, and a keyword
occurring early in a page often has little connection to a link
occurring late in the page. In Section 3.2 we describe how
to score answers based on proximity of keywords to links or
entity mentions.

We use the following terminology in the rest of the paper:

• categoryKeywordList : Keyword (or set of keywords) C
before the meta-word near which specifies the target
categories (entity types).

• nearKeywordList : The set of keywords following the
meta-word near. Each keyword is separated by space
within the parenthesis. Keywords within quotes are
considered as phrases and as a result, single keywords.

• nearKeywordOriginSet : The document pages that con-
tain the keywords in the nearKeywordList.

• relevantCategorySet : The set of categories relevant to
categoryKeywordList.

We could use either of the following alternatives to decide
which documents form the nearKeywordOriginSet:

• AND semantics: Every document in the nearKeywor-
dOriginSet must contain all the keywords in nearKey-
wordList.

• OR semantics: Every document in the nearKeywordO-
riginSet must contain at least one keyword from the
nearKeywordList.

In our implementation we use the default scoring mechanism
of Lucene, which corresponds to the OR semantics.



3.2 Scoring model
We now see how to score answers to near queries, using

the idea of activation spreading, as well as the relevance
of a category to the category keywords in the query. Our
technique extends the spreading activation technique used
for near queries in [11], by taking the proximity between
keywords and links (calculated using offset values) into ac-
count. Our scoring models have a number of parameters;
default values are specified for some of the parameters when
they are introduced, but the values used in our experiments
are given later, in Section 7.3.

3.2.1 Activation Spreading
As described in [11], activation spreading is initiated from

the nodes containing keywords, and spreads activation to
neighboring nodes. The following are the key features: (a)
The initial activation from a given keyword is spread to
nodes containing that keyword, in proportion to the node
prestige (PageRank) of each such node. Nodes that receive
the maximum activation form the results of the near query.
(b) Each node retains part of its incoming activation, and
spreads the remaining to its neighbors; the fraction spread
to each neighbor is inversely proportional the weight of the
directed edge from the node to its neighbor. (c) Activation
received from multiple neighbors is combined using a com-
bining function. Activation spreading continues until the
amount spread falls below a specified threshold.

We now describe how the above scheme is modified in our
context.

3.2.1.1 Initial Activation.
In our context, activation spreading starts from nodes

representing the documents which contain the keywords.
The initial hit set for query keywords is obtained using the
searcher available in Lucene. Lucene also returns the score
of the documents that are obtained as hits during the search.

The initial activation of a node is a combination of of the
relevance of the node to the keywords, given by the Lucene
score for the node, and the node prestige of the node. The
initialActivation value for each node is calculated from these
two scores by combining them either additively:

NodePrestige ∗ α + LuceneScore ∗ (1 − α) (1)

or multiplicatively:

[LuceneScoreα] ∗ [NodePrestige(1−α)] (2)

Here α is a distribution factor that can be tuned to give more
weight to the desired score. By default we use multiplicative
combination with α = 0.5.

Note that the above model is a little different from the
near query model of [11]; that model allowed each near key-
word to appear in a different tuple, and spread activation
separately for each near keyword. The activation scores were
combined across multiple keywords either multiplicatively
(for the AND semantics) or additively (for the OR seman-
tics). In the context of search on Wikipedia and other docu-
ment collections, it makes more sense to compute the initial
activation across all keywords, and then spread activation
only once.

3.2.1.2 Proximity and Spreading of Activation.
When spreading activation from a node, an attenuation

factor µ is used. Every node spreads a fraction 1 − µ of its

activation to its neighbors and retains the remaining µ frac-
tion for itself. By default, we set µ = 0.75. As in BANKS,
the fraction of activation spread to each neighbor depends
on the edge weights. However, the spreading of initial acti-
vation is special cased. The fraction of the initial activation
spread to each outlink depends on the proximity of the out-
links to the near keywords. Intuitively, if a keyword and a
link to an entity occur in proximity in a document, we be-
lieve that the entity is related to the keyword; the closer the
occurrences, the higher is the estimate of relevance of the en-
tity to the keyword. We use this idea to define the amount
of activation transferred to each of the entities linked with
the document.

The position offset of each term of a document is stored
with the index. And the offset information for every link
in a document is stored in the graph during pre-processing
phase. This offset is calculated with respect to the start
of the document. The amount of activation spread to the
entity pointed to by the link is proportional to the distance
between the link and the query keyword in the document.

The function to calculate the proximity of a link with
respect to a keyword must be such that its value degrades
as the distance between the link and the keyword increases.

Formally, if a word w occurs at position i, and a link
to an entity at position j, then if the position j is closer
to i, the propagated activation for word w at that position
would be larger than the propagated activation at a position
farther away. The issue of how the activation should decay
with distance is studied in [16]. We use the Gaussian kernel
function to calculate the proximity score.

k(i, j) = exp[−(i−j)2

2σ2 ]

The initial activation associated with a node in nearKey-
wordOriginSet is spread to the outlinks of the node in pro-
portion to proximity (using the formula defined above) based
on the distance between the outlink and the nearest occur-
rence of the near keyword; with multiple keywords, we take
the distance as the minimum, across all keywords, of the
distance as above.

3.2.2 Category Relevance
The answers to a keyword query must satisfy the target

type information specified in the query. In the near query
model, a user specifies the target type for the answers by
providing relevant keywords. In the context of near queries,
this target type specifies one or more categories, and the
result entity must belong to one of these categories. Each
category has a category relevance score, which is used in
entity ranking.

The categories are indexed separately, as documents, and
the categoryKeywordList specified in the query is used to
retrieve relevant categories; we call the set of categories re-
turned as the relevantCategorySet. We use the relevance
score that Lucene returns for each category as the relevance
of that category.

To calculate relevance score of an entity, the set of cat-
egories to which this entity belongs is retrieved. It is then
checked if any of these categories belongs to relevantCat-
egorySet and the maximum of the Lucene scores of such
categories is taken as the category relevance of that entity.



3.2.3 Combining Activation and Category-Relevance
Scores

After spreading of activation, the result of activation spread-
ing is stored in a priority heap ResultHeap. To get the final
score score of each entity, the activation score actScore and
the the category relevance score relScore of each node in
ResultHeap are combined additively as follows:

score(e) = actScore(e) ∗ η + relScore(e) ∗ (1 − η) (3)

The parameter η denotes the weight given to the score. En-
tities in the result are sorted by their scores score(e), and
output in descending order.

3.3 Discussion
Our scoring model for near queries spreads activation from

entities to other entities that are referenced in the Wikipedia
page of the entity (only links in or before the infobox are
considered, since Wikipedia pages often have less relevant
links later in the document).

For example, if we search for Universities near “web search”,
we may find many references to a person working on web
search techniques near keywords “web search”. Spreading
activation from such person entities can then give us a uni-
versity as an answer.

Earlier systems such as [5, 8, 7] and [15] (described in more
detail in Section 6) cannot do this, since they only look for
co-occurrences of entities and keywords to determine their
association.

4. PROCESSING ENTITY-RELATIONSHIP
QUERIES

In this section, we focus on issues involved in answering
entity-relationship queries. The query model we use is ba-
sically the same as that described in [14, 15], but we use a
different scoring system, as well as a different system design
and implementation to solve such queries.

In our formulation of the entity-relationship queries, as in
[15], we have a list of entity variables. Unlike in [15], each
entity variable is associated with a list of keywords specify-
ing the category of the desired entities called categoryKey-
wordList, and these category keywords are used to identify
one or more categories to be considered for the entity vari-
able.

Each entity variable can be associated with zero or more
predicates. There are two kinds of predicates in an entity-
relationship query :

• Selection Predicate : A selection predicate consists
of an entity variable and a list of keywords specifying
the criterion on the selection of entities. We call the
list of keywords as the NearKeywordList.

• Relation Predicate : A relation predicate consists
of two or more entity variables and a list of keywords
specifying the relationship between the entities described
by these variables.

As an example consider the following query from [15]:
“Find companies and their founders, where the companies
are in Silicon Valley and founders are Stanford graduates”.
Simple entity ranking systems are not adequate for such
complex information needs. Li et al. [15] provide a solu-
tion to this problem, by designing an entity-centric struc-
tured query mechanism called entity-relationship queries.

The above query expressed in the language of [15] is as fol-
lows:

select X, Y
from person X, companies Y
where X:[Stanford graduate]

and Y:[“Silicon Valley”]
and X,Y: [founder]

In the above query, X and Y are entity variables, bound to
specific entity types, while the keywords act as predicates.

The above query can be expressed in our syntax as follows:
find person(x) near (Stanford graduate) and

company(y) near (”Silicon Valley”)
such that x,y near (founder)

In this query, there are two entity variables named x and
y. The categoryKeywordList for variable x contains the word
“person” and for variable y, it contains the word “company”.
Variable x has a selection predicate consisting of keywords
“Stanford” and “graduate” while variable y has a selection
predicate consisting of keyword “Silicon Valley”. The query
also has a relation predicate on variables x and y consisting
of keyword “founder”.

As in ERQ [15], an entity variable can have more than
one selection predicates. For example

find person (x) near (“Turing Award”)
and near (IBM)

If we had instead used near (“Turing award”, IBM), we
would only get entities mentioned near co-occurrences of
Turing Award and IBM. In contrast, by using separate se-
lection predicates, the set of documents that establish that
a person is associated with “Turing Award” can be different
from the set of documents that establish that the person is
associated with IBM.

4.1 Scoring ERQ Answers
Scoring and ranking of the results is an important task.

The important concepts involved in ranking the entity search
results are:

• Proximity: Entities and keywords should be placed
close to each other in the text. Intuitively, the closer
they are to each other, the more likely is their associ-
ation with each other.

• Relevance to category: As the category itself is
specified in the form of keywords, there is uncertainty
involved regarding the relevance of an entity to the
specified category keywords.

• Number of Evidences: The more number of times
a set of entities appears with the keywords in the text,
the more likely is their association.

First, we score each answer entity tuple for each predicate
separately. Finally while merging the single predicate re-
sults, we calculate the aggregate score for each answer tuple
by taking the product of the single predicate scores for the
entities involved.

4.1.1 Selection Predicate Scoring
A selection predicate in an entity-relationship query is ba-

sically a near query, which we saw in Section 3. To compute
score of an answer entity e on a selection predicate p, we use
the scoring model for near queries described in Section 3.
We combine the activation score actScore and the category
relevance score relScore using the additive combination:



scorep(e) = actScore(e) ∗ η + relScore(e) ∗ (1 − η)

The combined score is a normalized score and the value is
always between 0 and 1.

If there is more than one selection predicates over the same
variable, we use the following formula, where p1, p2, . . . pn

denote the selection predicates on a single entity variable.

Scorep1,p2,...,pn
(e) = (Πi∈1...nactScorepi

(e)) ∗ η

+relScore(e) ∗ (1 − η)

4.1.2 Relation Predicate Scoring
Consider a relation predicate answer tuple < e1, e2, ..., en >,

and the set of occurrences O of the entities in the answer
tuple and the keywords corresponding to the predicate ap-
pearing together in the text. We calculate the score for the
relation predicate p as:

scorep(< e1, e2, ..., en >) =
∑

o∈O

exp[
−(TokenSpan(o))2

2σ2
]

where TokenSpan(o) is the number of tokens present in
the minimal scope in o covering all the entities and keywords.
λ is an input parameter specifying the threshold for the
maximum allowed value of TokenSpan and all occurrences
beyond this threshold are ignored.

4.1.3 Aggregating Single Predicate Scores
After computing single predicate scores for each predicate

result, we finally merge the results and calculate the aggre-
gate score for the final answer tuples. The aggregate score
aggScore is calculated as :

aggScore =
∏

p∈selPreds

scorep ∗
∏

p∈relPreds

score
γ
p

where selPreds and relPreds denote the selection and rela-
tion predicates, and γ is an input parameter controlling the
weightage given to the relation predicate scores.

4.2 Query Evaluation Algorithm
Given an entity-relationship query, our approach is to first

evaluate all the selection predicates individually to find the
list of entities for each entity variable involved in the query.
We then use these entity lists to evaluate the relation predi-
cates to find tuples of related entities. Finally we take a join
of the individual predicate result list on entities for same
entity variable. In the process, we also collect offset infor-
mation to finally score the answer tuples and rank them
accordingly. We look at the steps involved in evaluating an
entity-relationship query in the following sections.

4.3 Evaluating Selection Predicates
A selection predicate in Entity-Relationship Query is ex-

actly a near query. So we directly use the near query evalua-
tion algorithm described in Section 3 to get the list of answer
entities for each entity variable, along with their scores.

After this step, we will have a list of <entity, score> pairs
for each variable. For our example query, the lists would be:
variable x : <Scott McNealy, 1.0>, <Ken Kesey, 0.9973>,

<John Steinbeck, 0.9946>, ...
variable y : <Microsoft, 1.0>, <Hewlett-Packard, 0.9944>,

<Metro Newspapers, 0.9942>, ...

4.4 Evaluating Relation Predicates
Relation predicates specify a relationship between two or

more entities in terms of keywords. There are two alterna-
tive approaches to solve a relation predicate.

Approach 1

• Use the Lucene index to find documents containing
the relation keywords, along with their offsets in the
documents.

• For each Lucene hit page :

– Find entity references near those keyword occur-
rences, using the outlinks from the entity pages
(outlink information along with offsets is avail-
able in the extended graph representation, stored
in-memory).

– Check whether these entities belong to the selec-
tion predicate answer entity list for any of the
variables involved in this relation predicate and
put them in a list for the corresponding entity
variable.

– Perform a cross product of the lists for the entity
variables, to get the answer tuples.

– Note the offsets of the keywords and the entity
links for score calculation.

The problem in this approach is that in most cases, the
keywords specifying the relationship are very general (e.g.
“join”, “found” etc.) and generate a very large number of
hits. However only a small fraction of these pages contain
links to at least one entity from the selection predicate an-
swer list for each entity variable involved in this relation
predicate. Thus processing each document as above causes
a lot of useless processing.

We solve this problem using Approach 2 described below.

Approach 2.The result of a single relation predicate, tak-
ing into account selection predicates on all the associated
entity variables, can be computed as follows.

• Find lists of pages containing reference to at least one
of the entities in the selection predicate answer list for
each entity variable; this can be done using the inlinks
of the corresponding entity nodes, fetched from the
in-memory graph representation.

• Intersect these lists to find list of pages containing links
to at least one entity from the selection predicate an-
swer list for each entity variable.

• Intersect this list with the hit list for the relation key-
words to find all such pages also containing the relation
keywords.

• For each page in this list:

– Perform a cross product of the entity lists for each
entity variable present in this page to get the an-
swer tuples.

– Note the offsets of the keywords and the entity
links for score calculation.



1: Inputs: List of entity variables: eVars,
List of Keywords: nKeywords,
Mapping of variable to Entity list: varToEntityMap

2: Define: VarToPageMap: a mapping from entity
variables to list of pages

3: Define: VarPageToEntityMap: a mapping from
<entity-variable, page> pairs to a list of entities

4: for all v ∈ eVars do
5: for all entity ∈ varToEntityMap[v] do
6: pageSet ⇐ Find all pages pointing to entity

7: for all page ∈ pageSet do
8: VarToPageMap[v].Add(page)
9: VarPageToEntityMap[v, page].Add(entity)

10: end for
11: end for
12: end for
13: allLinkPageList ⇐ ∩v∈eV ars VarToPageMap[v]

/* Computes intersection of lists*/
14: LuceneHitArray ⇐ Find all pages which contain the

the keywords nKeywords using the Lucene Index.
15: for all luceneHitPage ∈ LuceneHitArray do
16: if luceneHitPage ∈ allLinkPageList then
17: Define varToEntitiesMap: a map from entity

variables to a list of entities
18: for all v ∈ eVars do
19: entityList ⇐ VarPageToEntityMap[v, NodeId]
20: varToEntitiesMap[v].Add(entityList)
21: end for
22: answerTuples ⇐ ×v∈eV arsvarToEntitiesMap[v]

/* Compute cross product (×) of entity lists;
optimization using band join described in text*/

23: ResultHeap.addAll(answerTuples)
24: end if
25: end for

Algorithm 1: Evaluating a relation predicate

An optimization of the this step is to perform a band
merge of lists sorted on their offsets, to only match en-
tity and relation keyword occurrences that are present
close to each other (in terms of their offsets), instead
of performing a cross product of the entity lists. This
can reduce costs greatly for pages with many entity
references and relation keyword occurrences.

The above intuition is formalized in Algorithm 1.
After this step, we have the list of entity-tuples with their

relation predicate scores. For our example query, we will
have a list like:
x,y : <(Bill Gates, Microsoft), 0.9896>,

<(David Filo, Yahoo!), 0.9745>,
<(Vinod Khosla, Sun Microsystems), 0.9257>, ...

4.5 Handling Complete Queries
If a query does not involve any relation predicate, process-

ing is straightforward. If the entity variable in such a query
has more than one selection predicate, we need to combine
the results of each selection predicate; we use a simple merge
join of the results.

If the query involves only one relation predicate, Algo-
rithm 1 gives the desired final answers. In case the query
has more than one relation predicate, we process each re-
lation predicate as above, and then do an equijoin on the

results of each selection predicate. Currently we do not op-
timize the join order, since none of our benchmark queries
has more than 2 relation predicates, but this could be a topic
of future work.

As an optimization, if a query has an entity variable with
more than one selection predicate, as well as a relation predi-
cate involving the same entity variable, we can avoid the join
of the selection predicate results; instead, when we process
the relation keyword we get a list of neighboring entities for
each keyword occurrence, and look up such entities in the
result entity lists for each of the selection predicates on that
entity variable.

5. HEURISTIC OPTIMIZATIONS
We now describe a few heuristics aimed at improving the

scoring of results. The effect of these optimizations is stud-
ied empirically in Section 7.

Using Wikipedia Infoboxes. In our initial implemen-
tation, every term in a Wikipedia article was assumed to
be relevant to the entity. However, our initial experiments
showed that most Wikipedia articles have a lot of terms
that are not very relevant. However, the terms early in the
article, in particular those that occur in the Wikipedia in-
foboxes, are highly relevant. We could have chosen to tailor
the ranking scheme of Lucene, but instead chose to use our
extended graph model to exploit this information, as follows.

When we build the graph, we assume that a self-link to
the same Wikipedia entity is present near each term in the
infobox, at a small offset (with default value as 5). Thus,
if we find some keyword in the infobox, we add some initial
activation to the entity itself. Similarly, we create self links
to the Wikipedia page from terms in the first few sentences
of each article; for concreteness, we use all sentences that
appear before the infobox in the article, since these generally
constitute a highly relevant summary of the entity.

Exploiting Wikipedia category specificity by match-
ing near keywords. Another area of performance improve-
ment is the specificity of Wikipedia categories. Wikipedia
provides a large collection of categories, many of which are
associated with very specific entities. For example, Nov-
els by Jane Austen, Films directed by Steven Speilberg, Uni-
versities in Catalunya are all Wikipedia categories.

Users are generally not aware of the presence of such cat-
egories, and would query on a higher level category, for ex-
ample novels, even if they are specifically looking for novels
by Jane Austen.

Thus, we look for the near keywords in the category ti-
tles also. If we find any category whose title contains all
the near keywords, we judge entities belonging (directly) to
the category as being more relevant to the near keywords.
If such a category is a subcategory of the original query
categories, the resulting entities are directly answers to the
original query. But even otherwise, we wish to give extra
weight to such entities for the purpose of spreading activa-
tion through entities that occur close to occurrences of the
near keywords.

To handle both the above goals, we add a constant value
(0.2) to the initial activation to entities directly belonging
to the above category; if an entity belongs to more than one
such category, its initial activation gets increased only once.



We demonstrate the effect of this feature in Section 7.

Spreading activation from articles with title contain-
ing the near keywords. Intuitively, if the title of an ar-
ticle contains all the near keywords, all the content in the
article can be assumed to be related to the keywords with
high probability. We exploit this intuition by spreading ac-
tivation from such articles to its out-neighbors.

In our spreading activation mechanism, the activation de-
cays for links farther away from the keyword occurrence. In
the special case of keywords in the article title, we treat all
outlinks early in the article (up to and including the infobox
for the article) as closely related to the keyword, even if they
are somewhat further off in terms of token offset.

We demonstrate the effect of this feature in Section 7.

6. RELATED WORK
Several systems such as ObjectRank [2], the system of [5]

and Entity Search [7] have been developed which return a
ranked list of entities as answers to keyword queries.

ObjectRank works on a graph model of data, with enti-
ties as nodes, and is based on a biased random walk model
which is an extension of the random walk model of PageR-
ank. Nodes also contain descriptive text, with the starting
nodes of the walk being determined by which nodes contain
the given keywords. The biased random walk determines
the score of each entity. The near query model of BANKS,
briefly mentioned in [11] uses a similar model, and has sim-
ilar goals, although details vary.

Chakrabarti et al. [5] describe an entity querying system
based on a model where documents have terms as well as
entity mentions. Queries can specify the type of the desired
entities, and keywords that they should be associated with.
For example, a query may ask for “cities near Eiffel tower”.
The occurrence of an entity mention near the given key-
words provides support for the relevance of that entity. The
support for an entity is aggregated across multiple occur-
rences of mentions of that entity near the given keywords.
Chakrabarti et al. [5] also describe a query language which
allows more complex queries to be created, allowing for ex-
ample entities that occur near entities retrieved by a sub-
query. The implementation in [5] worked on a Web scale
corpus, but was limited to a small number of entity types;
that limitation was subsequently removed [6].

EntityRank [8] has a similar goal, and also works on Web
scale data, but allows recognition of multiple entities co-
occurring with given keywords. Specifically, it allows the
query to specify multiple target entity types, such as #pro-
fessor, #university, along with keywords such as “database”.
All entities and keywords should co-occur near each other
in the same document. Entity Search [7] has goals similar
to that of [5], but focuses on efficient evaluation of queries
by creating appropriate indices.

Users are however often interested in relationships be-
tween entities, where the keywords that select entities may
occur separately from keywords that specify the desired re-
lationships; we give an example shortly. If the relationships
have been extracted already, it is possible to represent the
information using a graph model such as RDF, and then
a query language such as NAGA [12] can be used to exe-
cute such queries on the graph. The NAGA query language
allows complex connections to be specified, and allows ag-
gregation of evidence from multiple parts of the graph. How-

ever, a problem with this approach is that relationships have
to be extracted ahead of time, and at Web scale the number
of potential relationships is enormous. The YAGO dataset
[18] used in the NAGA system only extracted a few tens
of relationships. Other related work which considers inte-
gration of structured information and textual data includes
the ESTER system [3] and Pound et al. [17]. Both these
systems focus on relationships that have already been ex-
tracted, using the YAGO dataset, and thus support only a
limited number of relationships. However, both these sys-
tem allow queries to combine some form of textual search
with the queries on structured data.

The ERQ system [14, 15] presents an alternative approach
where the corpus is stored uninterpreted except for identifi-
cation of entities. Relationships are specified by keywords,
and found by keyword search on the corpus, in effect per-
forming a simplified on-the-fly extraction of relationships.

ERQ uses three position-based features for ranking an-
swers tuples. The first is proximity which emphasizes the
fact that if the entities and keywords are close to each other
in an evidence, then it is more likely to form a valid evi-
dence. The second feature is the ordering pattern of en-
tities and phrases in an evidence. The ordering patterns
which appear more often are better indicators of valid ev-
idences. The third feature is the mutual exclusion rule
which dictates that when evidences of different entities co-
occur in the same sentence, at most one colliding pattern
is effective. Our scoring model takes proximity into ac-
count, but does not currently implement ordering patterns
and mutual exclusion.

Although the ERQ system does not limit the number of
relationships, the evaluation algorithm used in ERQ requires
separate indices per entity type, and the implementation of
[15] indexed only 10 selected entity types. Thus the num-
ber of queries that can be expressed is limited. In contrast,
in our system, we handle all possible categories specified
in Wikipedia/YAGO. To our knowledge, all the earlier sys-
tems require the answer types to be precisely specified in the
query. In the real world, such specification is not easy, since
users are not aware of what types are available. Our system
allows type specification to be done based on keywords that
match types, and all matching types are answer candidates;
a match score for each answer type is taken into account
along with entity scores, to get the overall answer ranking.

We use Lucene as a document-centric indexing system,
and exploit our extended graph model to efficiently find en-
tity mentions in proximity to keyword occurrences. The
in-memory graph also provides a mapping between entities
and their categories.

7. EXPERIMENTAL EVALUATION
In this section, we present a detailed analysis of the ef-

fectiveness our approach for solving near queries and entity-
relationship queries. We look at the contribution of different
factors involved in the approach. We also show a compari-
son of the quality of our results with those generated by the
ERQ system of Li et al. [15].

7.1 Experimental Setup
We have implemented our algorithms in Java using servlets;

we call our system WikiBANKS. Our system is available for
access over the Web at the URL www.cse.iitb.ac.in/banks.
The machine we used has 12 GB of RAM and an Intel Xeon



E5504, 2 GHz processor, with 1 TB Hard disk with SATA
interface, running Ubuntu 10.04 LTS with a Linux 2.6.32-34
kernel. The database system used is PostgreSQL 8.3.7.

The Wikipedia graph was created out of a Wikipedia
dump as of January 2009, and has following characteristics:
number of nodes: 16.28 million, number of edges: 179.5 mil-
lion, average indegree: 5.4303, maximum indegree: 374882.
The graph takes about 4 GB space and takes about 85 sec-
onds to load.

We index Wikipedia data using Lucene. For each docu-
ment in Wikipedia, a virtual document is created, containing
three fields: (a) Nodeid: the Wikipedia article ID, (b) Title:
the title of the article, and (c) Content: the textual content
of the article. The title and content field are indexed using
Lucene, while Nodeid is stored but not indexed. The index
stores term offsets for each occurrence of a term in each doc-
ument that it occurs in. The index building is done after
assigning prestige scores to the nodes of the graph. These
node prestige scores are also included in indexing to boost
the hits of the relevant nodes. We use Lucene Collectors to
collect the Lucene scores for documents and SpanQuery to
get the offsets of the search terms.

7.2 Query Set
Unlike the ERQ system of Li et al. [15], which supports

only a limited number of categories, our system supports
all the Yago categories, numbering nearly 150,000. Thus
our system can answer a vastly larger number of queries
than ERQ. However, to compare the two systems, we chose
a set of 27 queries from the “Own28” set of Li et al. [15],
available online at http://idir.uta.edu/erq/, as a performance
benchmark. The query set includes:

• Q1 - Q16 : Single selection predicate queries, i.e. Near
queries with only one selection predicate.

• Q17 - Q21 : Multiple selection predicate queries, i.e.
Near queries with multiple selection predicates on the
same entity variable.

• Q22 - Q27 : Entity-relationship queries, also known as
multi-predicate queries with join.

For each query, we have a manually collected a set of
correct answers, which we believe is fairly complete. We
consider these sets as the ground truth when evaluating the
performance. While [15] has only a limited number of entity
categories available for use in queries, when we expressed the
queries in our system for a few of the queries we made use
of the richer set of categories available to us; the specific
set of changes were: actor instead of person, football player
instead of player, and football club instead of club, in queries
where such substitutions are appropriate.

7.3 Parameter Settings
There are a number of input parameters involved in our

query processing and scoring model. We have executed a
large number of queries with different parameter settings,
and manually chose the optimum values for these parame-
ters, i.e. the values that gave the best precision. For se-
lection predicates, we set the token span λ = 12, and the
value σ = 6 for proximity scoring using the Gaussian kernel.
For near queries with a single selection predicate we use the
weightage for activation η = 0.1, while for near queries with

multiple selection predicates we use η = 0.6. For entity-
relationship queries, we set η = 0.8 for selection predicates;
for relation predicates we set λ = 16, σ = 8, and the multi-
plicative weighting factor for relations predicates γ = 0.6.

7.4 Measures of Performance
We have used the following precision measures to compare

the performance:

• Precision at k : Also referred to as P@k, it is the
precision at a given cut-off rank. It is calculated as:

P@k =
|relDocs

⋂
topKDocs|

k

where relDocs is the set of all relevant documents (here,
entities) and topKDocs is the set containing the top-
K documents (here, entities) that are retrieved. Our
precision at K graphs stop at K = 10.

• Recall : Recall is the fraction of the documents that
are relevant to the query that are successfully retrieved:

recall =
|relDocs

⋂
retrievedDocs|

|relDocs|

where retrievedDocs is the set of all documents (here,
entities) that are retrieved. To compare precision and
recall, we have plotted precision at specific values of
recall. To calculate this, we find the precision at the
point when we have retrieved just enough answers to
achieve a particular recall value (i.e. particular frac-
tion of the set of all correct answers). When the sys-
tem is unable to retrieve enough answers to achieve a
particular recall value, we define the precision at that
recall value as zero.

7.5 Experimental Results
Figure 1 compares the performance of the basic system

(without the optimizations described in Section 5) with and
without using offsets information. The comparison is for
near queries Q1 through Q16. For the case where offsets
are not used, we explore all nodes linked from the nodes
containing near keywords, without regards to the token dis-
tance between the near keyword and the links. This causes
a large number of irrelevant nodes to be explored, and in-
creases query execution time as well as memory utilization.
Figure 1 (a) shows that the average precision at k is much
lower without using offset information, for k up to 10.

However, Figure 1 (b) indicates that the average preci-
sion is lower for “with offsets” than “without offsets” at
80% recall. This is because, in case of “without offsets”,
a large number of nodes are explored and hence it gener-
ates higher fraction of correct answers. The “with offsets”
version spreads activation only to nodes that are within a
limited offset (span), which is set to 12 by default. As a
result this version explores fewer nodes, and fails to gener-
ate several answers which the “without offsets” technique is
able to generate; as per our definitions, the precision is 0 at
this point for these queries, reducing the average precision
significantly. Since users are likely to only view the top-k
results for some small value of k, the version with offsets is
definitely preferable.

Next, we compare the performance of our system with
ERQ [15]. We have experimented with 5 different versions
of our system to isolate the effect of various optimizations
described in Section 5. The different versions are as follows:



(a) Precision at k (b) Precision vs. recall

Figure 1: Effect of offsets on near queries with single selection predicate (no optimization)

Near Near
k Basic Titles Infobox Categories All 3 ERQ
1 0.704 0.666 0.814 0.851 0.851 0.741
2 0.741 0.777 0.759 0.833 0.814 0.833
3 0.703 0.728 0.753 0.79 0.814 0.796
4 0.731 0.75 0.741 0.796 0.833 0.75
5 0.733 0.748 0.733 0.807 0.822 0.76
6 0.703 0.715 0.703 0.802 0.814 0.716
7 0.693 0.714 0.692 0.793 0.804 0.72
8 0.675 0.694 0.689 0.777 0.81 0.734
9 0.678 0.691 0.695 0.765 0.802 0.71
10 0.681 0.685 0.696 0.751 0.785 0.698

Table 1: Precision at k for All Queries

• Basic: In this version, we use the basic model with-
out any of the optimizations.

• Near Titles: In this version, along with the ba-
sic features, we also spread activation from articles
whose titles contain the near keywords to all its out-
neighbors.

• Infobox: In this version, we use the infobox informa-
tion and add some initial activation to the node whose
infobox contains the near keywords.

• Near Categories: In this version, we exploit the
Wikipedia category specificity as explained earlier.

• All Features: This version uses all the above opti-
mizations along with the basic version.

The precision and precision versus recall numbers for ERQ
are obtained by running the queries on their system, avail-
able online at http://idir.uta.edu/erq/.

Table 1 gives the precision at k values for our complete
set of test queries. The table data clearly shows that each
of the additional features improves the precision. Specially,
the NearCategories feature improves the performance by a
large margin. Using all the features together gives us the
best performance.

Figure 2 shows the plot for the precision at k values across
all queries, with different system features turned on. Fig-
ure 3 shows the same information, but separately for differ-
ent types of queries. The graphs indicates that our system

Figure 2: Precision at k for all queries

clearly outperforms ERQ for near queries, with single selec-
tion predicate as well as with multiple selection predicates.

For entity-relationship queries, the ERQ system provided
better precision. One reason for the lower precision is that
our system allows flexible specification of categories. On
Q28 from the OWN28 set (not included in the performance
results) most of the films returned were in fact academy
award winning movies adapted from novels, but in place of
novels, the query returned other movies. This is because
these movies are in categories such as “movies adapted from
novels”, and since such a category is treated as a valid cat-
egory for the category keyword “novel”, the query treats
the movie itself as a novel. Requiring exact match for cate-
gories improved the result quality drastically, with 9 out the
top 10 answers being correct. Our scoring system needs to
be improved to avoid problems due to non-exact category
matches.

However, the ERQ system requires categories to be pre-
cisely specified, which is not an easy task for a casual user,
whereas we can handle queries where the categories are not
precisely specified. (In addition our implementation can
handle a very large number of categories in contrast to the
limited number of categories handled by the current ERQ
implementation.)

We also found anecdotally that the mutual exclusion and
ordering pattern heuristics used in [15] would have been use-
ful in improving precision, had we implemented them. Im-
plementing these heuristics is an area of future work.

Table 2 shows average query execution time for various
types of queries. Execution time is the response time mea-
sured when the query is input to the servlet. Table 3 shows
average memory utilization for the queries in terms of num-



(a) near queries with single selection (b) near queries with multiple selections (c) entity-relationship queries

Figure 3: Precision at k by query type

Query Set COLD CACHE WARM CACHE
Single Selection 4.546 1.694

Multiple Selection 12.112 5.837
Entity-Relationship 14.44 9.317

All 8.233 4.284

Table 2: Average Query Execution Time (in sec-
onds)

Query Nodes Size of
Set Explored Target Queue

Single selection 7474 210
Multiple selection 48132 4074
Entity relationship 84003 9635

All 32010 3020

Table 3: Average Memory Utilization

ber of nodes explored during activation spreading and size
of the target queue. Target queue size determines the collec-
tion of nodes which are processed during ranking to produce
final set of answers i.e. it is set of probable answers before
ranking. Table 4 gives the average recall i.e. average of frac-
tion of correct answers reported by the system for various
types of queries.

Figure 4 shows the plots of precision versus recall across all
queries, while Figure 5 shows the same information for each
query type. Since some queries do not have 100% recall up
to the number of answers retrieved, we show the precision
as 0 at recall percentages that are higher. Figure 4 show
that WikiBANKS outperforms ERQ overall, while Figure 5
shows that WikiBANKS outperforms ERQ in case of near
queries with single and multiple selection predicates, but
ERQ achieves better performance for relationship queries.

We also tested our system on a number of other queries,
many of which we could not run on the ERQ system since
they used types such as medicines, airports, languages, ani-
mals, currencies, and so on which are among the many types
not currently supported in the ERQ implementation. The
precision at k and execution time for these queries were sim-
ilar to the results we saw earlier for queries from the ERQ
system. We omit details for lack of space.

Query Near Info- Near
Set Basic Titles box Cate- All 3 ERQ

gories
Single 0.639 0.662 0.645 0.77 0.788 0.635

selection
Multiple 0.448 0.488 0.448 0.565 0.598 0.414
selection
Entity-
relation- 0.511 0.537 0.500 0.511 0.533 0.672

ship
All 0.575 0.602 0.577 0.674 0.696 0.602

Table 4: Average Recall

Figure 4: Precision vs. Recall for all queries

We also ran some queries to test the impact of spread-
ing activation through the graph, a feature we support,
but other entity ranking techniques do not support. How-
ever, we did not find much difference since in most cases
the Wikipedia corpus has direct links to the desired enti-
ties from pages containing the near keywords, and adding
indirect activation did not help. For example, for the query
“University near Nobel prize”, the infoboxes of Nobel prize
winners pages mentioned the Nobel prize and had a link to
their institutions. We expect these results will be different
if we include Web pages instead of just Wikipedia pages, an
area of ongoing work.

8. CONCLUSIONS AND FUTURE WORK
We have proposed a novel extended graph representation,



(a) near queries with single selection (b) near queries with multiple selections (c) entity-relationship queries

Figure 5: Precision vs. recall by query type

and showed how to exploit it to answer entity ranking (near)
queries and entity-relationship queries on the Wikipedia cor-
pus. Unlike earlier systems we allow type specification throu-
gh keywords, and develop novel scoring mechanisms based
on spreading activation. Our performance study shows good
result quality, beating earlier work on entity queries. Im-
proving performance on entity-relationship queries is an area
of current work.

The Wikipedia corpus has a limited number of explicit
entity mentions, limiting the effect of spreading activation
from keywords to nearby entities. We are currently extend-
ing our system to work on the annotated Web corpus of [6],
which would provide a much richer set of keyword-entity as-
sociations. With such a system, we cannot keep the entire
Web graph in memory; however, the number of entities is
still relatively small (since we use Wikipedia as the source
for entities), and we can keep these entities, along with their
category hierarchy, in memory. We have developed versions
of our algorithms tailored for such an environment, with
data partitioned across multiple machines. Initial results
demonstrate the feasibility of such a system, both in terms
of answer quality, and interactive response times. We are
currently working on improving the answer quality of the
system. Extending our implementation to add the mutual
exclusion and ordering pattern heuristics of [15] is another
direction for future work.
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