
BaSE (Byte addressable Storage Engine) Access Method

Krishnaprasad Shastry

Hewlett-Packard ISO Pvt. Ltd.

Bangalore.

krishnaprasad.shastry@hp.com

Shine Mathew

Hewlett-Packard ISO Pvt. Ltd.

Bangalore.

shinem@hp.com

Sathyanarayanan Manamohan

Hewlett-Packard ISO Pvt. Ltd.

Bangalore.

sathya@hp.com

Goetz Graefe

Hewlett-Packard Laboratories,

Palo Alto, CA, USA.

goetz.graefe@hp.com

Abstract

Non-Volatile Memory (NVM) is an emerging

memory technology that combines the best

properties of today’s hard disks and today’s main

memory by combining non-volatility, high

density, high speed, and byte addressability. This

provides an opportunity to redesign systems and

their software stacks to improve performance and

to reduce the system and software complexity.

Present-day database systems are designed and

optimized for traditional disks and deep memory

hierarchies. This makes them very complex

because they have to handle varying levels of

storage latencies, from CPU caches to hard disks.

Our intention is to build a prototype storage

engine optimized for NVM to take advantage of

the collapsed memory hierarchy, and to develop

this storage engine in an incremental way. In this

paper, we discuss the optimizations for the data

access module. We modified the B-tree access

module of an open source storage engine, which

reduced the lock contention by 99.6%, i.e., by a

factor of 273.

1. Introduction

At its heart, a typical RDBMS has five main components

– Client communication Manager, Process manager,

Relational query processor, Transactional storage

manager and Shared components and Utilities [HSH07].

Transactional storage manager typically encompasses

four deeply intertwined components – Lock manager, log

manager, buffer pool and access methods [HSH07]. Our

intention is to develop novel technologies to build a

transaction storage manager, for the NVM environment in

a phased manner. We will call transactional storage

manager as transactional storage engine in the remainder

of this document.

Non Volatile Memory (NVM) is an emerging memory

technology that combines best properties of today’s hard

disks and main memory and offers non-volatility, high

speed and byte addressability.

We have a significant opportunity to redesign

transactional storage engine modules for NVM and

improve performance substantially. We aim to develop

such an optimized storage system by redesigning these

modules one by one in a phased manner. In this paper, we

focus on optimizing the Access methods.

B-tree lookup and latching are the two significant

contributors for Access method performance. Latching

was not seen as a major overhead earlier because IO

overheads masked it in traditional disk based database

systems. Once IO overheads are eliminated, latching

becomes a significant overhead. As shown in figure 1,
Latching accounts for about 14% of the instructions, and

is primarily important in the create record and B-tree

lookup portions of the transaction [HAMS08]. Hence

minimizing latch contention can significantly improve the

concurrency and system performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The 19th International Conference on Management of Data
(COMAD),
19th-21st Dec, 2013 at Ahmedabad, India.
Copyright © 2013 Computer Society of India (CSI).

Figure 1

Foster B-trees [GKK12] are a new variant of B-trees that

combine advantages of prior B-tree variants optimized for

multi-core processors and modern memory hierarchies

with flash storage and nonvolatile memory. Foster B-trees

reduces the number of latches and the latch duration.

In our work, we demonstrate the applicability of Foster B-

trees to a popular database management system. We have

chosen the open source DBMS MariaDB and the

associated storage engine XtraDB, which are forks of

MySQL DBMS and InnoDB storage engine. We

integrated Foster B-trees with XtraDB. We optimized

XtraDB B-tree access methods and latching to leverage

the Foster B-tree design principles.

To optimize the performance, we replace the multi-pass

insert algorithm in XtraDB with a single-pass algorithm.

We eliminate the “pessimistic insert” method and

minimize data redistribution during tree splits. We also

implement U-latch to support optimistic adoption of the

foster child.

The performance evaluation shows a significant reduction

in latch contentions and a good improvement in response

time.

When the entire database is available in memory, the

behavior exhibited by the storage engine can be compared

with the one running on a system built with NVM. This

makes the results observed in this experiment applicable

for NVM.

1.1 Structure of this document

The remainder of this paper is organized as follows. In

section 2, we describe the B-tree implementation in

XtraDB and Foster B-tree data structures. In section 3, we

discuss how Foster B-tree was integrated with XtraDB

and highlight the unique contributions we made. In

section 4, we describe how the performance improvement

was evaluated and conclude the work in section 5.

2. B-tree Data Structures

2.1 B-tree implementation in XtraDB

This description is based on our analysis of the XtraDB

code. To the best of our knowledge, this has not been

documented in any publicly available paper.

XtraDB storage engine uses modified B
link

 trees [YB87]

to store the data. In XtraDB storage engine, the nodes of

the B
link

 tree are often referred as pages, and we follow the

same notation in this document. User records are stored

only at the leaf pages. Intermediate pages and the root

page store several special records known as “node

pointers”. Each node pointer points to a child of the page.

The “node pointers” are built from the value of the

indexing “key” of the given index/table and the
identification number of its child page. The identification

number associated with a page is referred as “page

number”. At any given level, the pages are connected to

the neighboring pages using “next” and “previous”

pointers. The leaf pages are always considered as “level

0” and the level increases towards the root page. XtraDB

storage engine ensures the page number associated with a

root page of any B
link

 tree remains intact as long as the

tree exists. Figure 2 illustrates a simplified representation

of the B
link

 tree used in XtraDB.

Figure 2

Within a page, records are stored as a linked list in sorted

order. To reduce the access time, XtraDB uses a shortcut

pointer, which is referred as a “directory slot”. The offset

of the start of every sixth record in the linked list is stored

in one directory slot, and the number of directory slots

increases as more records are inserted into the page.

Directory slots are built from the values of the indexing

keys and the offsets to the corresponding records. Figure

3 provides the graphical representation of “directory slot”.

Figure 4

In XtraDB, each page is 16KB in size. Out of this, 128

bytes are used for bookkeeping and the remaining space is

available for storing records. The user record grows

towards the higher memory address whereas the

“directory slots” grow towards the lower memory

addresses. Figure 4 illustrates the page layout.

Figure 4

Tree traversal in XtraDB starts at the root page and then,

goes down to the leaf level. If a search key is available,

then it uses the given search key to identify the child page

and repeats the same operation until the cursor reaches the

leaf page. In case of tree traversal without a search key,

the cursor will be positioned at the left most leaf page for

forward scan and right most leaf page for reverse scan.

Once the cursor is positioned at a leaf page, XtraDB uses

the “next” (or “previous”) pointers to move to the next (or

previous) page and read the records. Because of the “next”

and “previous” pointers in a page, a minimum of four

pages (current page, new page, next/previous page and the

parent page) must be latched in case of a page split.

In XtraDB, the tree modifications are performed under an

x-latch on the index data structure. This can be considered

as a tree latch, which blocks other concurrent accesses of

the tree. The x-latch on the index becomes a bottleneck in

the case of highly concurrent tree modifications. The

existing XtraDB implementation holds latches on index

data structure, parent page, current page, new page and

next or previous page during a page spilt.

2.2 Foster B-trees

Foster B-trees [GKK12] are a new variant of B-trees that

combine advantages of prior B-tree variants optimized for

multi-core processors and modern memory hierarchies

with flash storage and nonvolatile memory. The defining

properties of Foster B-trees are a single incoming pointer

per node at all times, fence keys in every node, and

structural operations similar to Blink trees. Single incoming

pointer to a node reduces the number of latches required

in case of node split, which is ideal for multi-core

architectures. Figure 5 provides the pictorial

representation of a Foster B-tree.

Figure 5

3. Foster B-tree implementation in XtraDB

3.1 Data structure changes for implementing

Foster B-tree

We redesigned the Blink tree data structures of XtraDB to

implement Foster B-tree. Since Foster B-trees do not need

next and previous pointers, we removed these from the

existing B-tree structure and added new members to store

fence keys and foster child pointers. Figure 6 illustrates

the new XtraDB page layout.

The pointers to fence keys are kept at a fixed location

(x+0x3FF0 and x+0x3FF2 where x is the start address of

the page) for quicker access, but the actual fence key can

reside anywhere in the user record space. It should be

noted that, the fence keys are not part of the user record

chain. New methods are implemented to access fence

keys. Fence key pointer initialized to 0 indicates +/-

infinity as fence key. The fence keys are built from the

values of indexing key.

Figure 6

To ensure consistency of new storage engine, every page

must satisfy two conditions. The first condition defines

the valid range for key values of user records for any

given page. The valid key values must be less than the

high fence key and must be greater than or equal to the

low fence key. The second condition defines the relation

between the fence keys of two consecutive pages at any

given level. The high fence key of the left page must be

equal to the low fence key of the right page.

3.2 Algorithm changes for reducing latch

contention

To gain the benefits of Foster B-tree and NVM, some of

the basic algorithms are redesigned and a few new

algorithms are added. We redesigned the B-tree

modification algorithm and added new algorithms for tree

traversal.

The traditional insert algorithm is based on a multi-pass

approach. This approach works well with the current

hardware and software stack. With Foster B trees, a single

pass is enough. Table 1 shows a high-level comparison

between the old algorithm and the new algorithm. The

new algorithm is built into XtraDB’s “optimistic insert”

method.

The flowcharts of the original XtraDB algorithm and the

new algorithm are shown in the Appendix. Flowchart 1

represents original algorithm used by XtraDB and

Flowchart 2 represents new algorithm.

In case of traditional XtraDB, the “next” and “previous”

pointers are used to move the cursor from one page to

another after control reaches the desired level. Foster B-

tree has removed the “next” and previous” pointers and

the tree traversal always start from the root page. We

move from a page to the next using the value of fence

keys. High fence key of the current page is used to

identify the next page and Low fence is used to identify

the previous page.

In the future, the need to start traversal from the root page

can be eliminated by using page caching. With this

technique, to move to the next or the previous page, we

need to move only one level up in the tree. The page

cache will be invalidated in the case of a structural change

to the B-tree and the traversal must start from the root

again.

Table 1

S.I XtraDB XtraDB + Foster B

tree

1 Multi-pass approach

(optimistic[1] insert

followed by

pessimistic[2] insert)

Single-pass approach

(only optimistic insert)

2 Multiple tree traversal Single tree traversal

3 Holds x-latch on the

index for a long

duration.

Holds x-latch on the

index for a shorter

duration. The x-latch on

the index is held only

during the foster child

adoption.

4 In case of page split, a

minimum of four

nodes are x-latched.

In case of page split, a

maximum of two nodes

are x-latched.

5 In case of page split,

the tree structure

changes

In case of page split,

foster child is created

and attached to current

page.

6 New page is attached

to the parent page

during the page split.

Foster child is adopted

during tree traversal.

1. Optimistic insert assumes the new record will fit into the
page when it inserts it. If this fails, storage engine will try the

second attempt using pessimistic insert algorithm.

2. Pessimistic insert will anticipate a page split and handle it
appropriately.

To gain the benefits of Foster B-tree in XtraDB, we

redesigned the B-tree modification algorithm and added

new algorithms for tree traversal. For inserting new

records, XtraDB first attempts an “optimistic insert”

algorithm. If this fails, it retries with a “pessimistic insert”

algorithm. This multi-pass approach degrades the

performance and is not in alignment with design

principles of Foster B-trees. To improve the performance,

we eliminated “pessimistic insert” method and redesigned

XtraDB “optimistic insert” to handle page splits.

The “pessimistic insert” method is used whenever the

insert results in page split. The “pessimistic insert” splits

the page, moves half of the records to the new page and

then, inserts the new record into the appropriate page.

Data redistribution happens in all cases except when the

new record is positioned at the end of the current page.

XtraDB holds an x-latch on the index for the entire

duration of the “pessimistic insert”. We added new

algorithms to the “optimistic insert” method to handle

page splits and data redistribution. If the new record

cannot fit into the current page, then we create a foster-

child and attach it to the current page while holding an x-

latch on the foster-parent and foster-child. This reduces

the number of x-latches acquired and eliminates the x-

latch on the index during inserts. Our new algorithm

always tries to minimize the data movement. We achieved

this by not always splitting the page in the middle –

instead the page is split optimally based on position of the

new record and size of fence keys. Table 1 lists the

changes between the existing algorithm and the new

algorithm.

We attempt foster adoption during tree traversal and

implement opportunistic adoption and forced adoption

algorithms to optimize the overall performance. During

the tree traversal, we perform opportunistic adoption if an

x-latch can be acquired on the index in non-blocking

mode. If the attempt to acquire x-latch on the index

without blocking fails, foster adoption does not occur.

This will eventually lead to the formation of foster chain.

Once foster chain length exceeds the pre-defined

threshold, we perform forced foster adoption. During

forced foster adoption, we block until we acquire the x-

latch on the index.

We implemented u-latch, update intended latch, to

support opportunistic foster adoption. A successful u-latch

elevates an existing s-latch on the index to an x-latch.

During tree traversal u-latch is attempted in non-blocking

mode. If it is successful, opportunistic foster adoption is

performed. During foster adoption only the parent and

foster child pages are x-latched. This approach reduces

the number of x-latches acquired and the duration of x-

latch on the index significantly.

4. Performance evaluation

We evaluated the performance improvements of XtraDB

with Foster B-tree Access method in three phases. In the

first phase, we measured the reduction in the number of x-

latches acquired during the concurrent random inserts. In

the second phase, we measured the throughput for a single

worker thread inserting random records and, we evaluated

the throughput improvement for concurrent random

inserts in the last phase.

In XtraDB, only INSERT operations cause page splits and

foster child creation. In case of delete operations, XtraDB

sets a special flag to mark the records as deleted and does

not change the tree structure immediately. Also, the

DELETE algorithm for a Foster B-tree acquires the same

number of latches as the algorithm for DELETE on a

regular B-tree. So we focused on just INSERT operations

for our performance measurements. No standard

benchmark is available for measuring the insert

performance alone for a RDBMS; so we developed a

multi-threaded application to perform random inserts and

to measure the elapsed time. We instrumented the XtraDB

code to monitor the latches acquired during database

operations.

We evaluated the performance on a system with 8 Intel

cores and 16GB RAM running SuSE Linux 2.6.32. We

used MariaDB 5.2.7 release for our evaluation. The test

application creates a table with a record length of 80 bytes.

The data types of the columns or primary key do not have

any effect on the number of x-latches. We chose an

integer column as the primary key to make dynamic data

generation easy.

To evaluate latch contention, we loaded the table with 1

million records and then, randomly inserted 1 million

records each from 16 concurrent threads. The seed values

for the random number generator were chosen carefully to

minimize the chances of generating non-unique values as

keys. If any non-unique keys were generated, the worker

threads ignore that record and continue with the rest of the

records.

As shown in table 2 and figure 7, Foster B-trees reduce

the latch contentions during inserts by 99.6%, i.e., by a

factor of 273.

Table 2

 XtraDB FBT Improvement

Number of

Records 16987225 16987225

#X-Latch

(index + B-

tree pages) 884321 3231 99.6%

Figure 7

To evaluate the impact of the new tree traversal

algorithms we introduced, we ran the same application

with one worker thread to insert 1 million, 2 million, 4

million, 8 million and 16 million records. Since there is

no latch contention in this experiment, we expected the

performance of the Foster B-tree to be slightly worse than

the default implementation because of the increased

overheads while traversing and maintaining the tree. As

shown in table 3 and figure 8, Foster B-trees performed

on par with default XtraDB. This shows the overheads

introduced by Foster B-tree are negligible.

Table 3

No of
Records
(million)

Average Time
(s) (XtraDB)

Average Time
(s) (FBT)

1 76 73

2 151 151

4 299 302

8 617 606

16 1219 1214

Figure 8

To evaluate the performance improvement in throughput,

we ran the same application with 16, 32 and 64 concurrent

connections. Each worker thread inserted 1 million

random records. As shown in Table 4 and Figure 9, Foster

B-trees perform better with more number of concurrent

connections. The performance improves linearly with

increasing the number of threads and with 64 concurrent

connections, it performs 20% better than default XtraDB.

Table 4

No of
Connec

tions

Average
Time in
seconds
(XtraDB)

Average
Time in
seconds

(FBT)

Improvement
in %

16 435 433 0.461894

32 441 406 8.62069

64 461 385 19.74026

Figure 9

5. Conclusions

We have successfully demonstrated the benefits of Foster

B-tree using MariaDB/XtraDB DMBS. We have

integrated Foster B-tree with XtraDB and redesigned its

algorithms to reap the benefits of Foster B-tree to improve

the performance. We have redesigned the XtraDB page

layout to have only one incoming pointer and removed the

next and previous pointer. We have eliminated the

pessimistic-inserts and implemented new algorithms to

support “optimistic insert” to handle page splits. We have

implemented an advanced approach to adopt foster

children using U-latch. We have instrumented the XtraDB

storage engine to monitor the number of latches acquired

during database operations. We have evaluated the

performance on an environment where the entire data set

fit into memory and have recorded a significant reduction

in latch contention on B-tree data structures.

The results show the Foster B-tree is an ideal Access

method for transactional storage engines designed for a

NVM that supports byte addressing.

References

[HAMS08] Stavros Harizopoulos, Daniel J. Abadi,

Samuel Madden, Michael Stonebraker “OLTP Through

the Looking Glass, and What We Found There” SIGMOD

2008

[GKK12] Goetz Graefe, Hideaki Kimura, Harumi A.

Kuno: Foster b-trees. ACM Trans. Database Syst. 37(3):

17 (2012)

[HSH07] Joseph M. Hellerstein, Michael Stonebraker,

James Hamilton: Architecture of a Database System.

Foundations and Trends® in Databases Vol. 1, No. 2

(2007) 141–259

[LY81] P. L. Lehman, S. B. Yao: Efficient locking for

concurrent operations on B-trees. ACM Trans. Database

Syst., vol. 6, pp. 650–670, December 1981.

Appendix

INSERT A

RECORD

Acquire x-

latch on the

index

No

Yes

Acquire s-

latch on the

index

Acquire x-

latch on leaf

node

Release the

s-latch on the

index

Write undo

log

Insert the

record

Write redo log

&

mtr_commit

Optimistic Insert

Pessimistic Insert

Acquire x-

latch on the

leaf node

Write undo

log

Allocate new

page and x-

latch it

Insert record

Is Insert

successful?

Is Insert

successful?

Yes

Error

No

Mt_commit – releases all the latches and commits the mini-transaction

Traverse the

Tree

Traverse the

Tree

Traverse the

Tree

Insert node

pointer to

parent node

Write redo log

&

mtr_commit

Completed Insert

Operation

Acquire x-

latch on the

parent node

Yes

Flowchart 1

INSERT A

RECORD

Acquire s-

latch on the

index

Traverse the

Tree

Optimistic Insert

Is there A

foster child

Acquire X-

latch on index

Acquire U-

latch on index

Adopt foster

child

Foster

Child

Adoption

Foster Child

Adoption

Acquire x-latch on

leaf node

Release the latch-

on index

Insert new record

Insert

successful?

Allocate new

page and

attach it as

foster child

Update fence

keys

Write undo

log

Write redo log

&

mtr_commit

Insert new

record

Insert

successful?

Completed Insert

Operation

Yes

No

Yes

FCL > N

If Success

End

Yes

Error

Mt_commit – releases all the latches and commits the mini-transaction

Flowchart 2

