
117

Transaction support for HBase
Krishnaprasad Shastry

Hewlett Packard
India Software operation

Bangalore-48
+91-8033866316

krishnaprasad.shastry@hp.com

Kirk M Bresniker
Hewlett Packard

1501 Page Mill Road, Palo Alto
California- 94304-1100, U.S

+1-650 583533

kirk.bresniker@hp.com

Sandesh Madhyastha
Hewlett Packard

India Software operation
Bangalore-48

+91-8033867304

Sandesh-
v.madhyastha@hp.com

Greg Battas

Hewlett Packard
11060 Desert Glen Drive, Fishers

Indiana- 46037,U.S
+1-3178423618

greg.battas@hp.com

Saket Kumar
Hewlett Packard

India Software operation
Bangalore-48

+91-8033868318

Saket.kumar3@hp.com

ABSTRACT
NoSQL technologies such as HBase, Cassandra, MongoDB are
becoming popular due to their ability to scale and handle large
volumes of data as opposed to a traditional Relational Database
Management System (RDBMS). However they lack two major
functionalities provided by traditional RDBMS namely
“transactional support” and “SQL interface”. Transactions are
designed to maintain database integrity in a known, consistent state,
by ensuring that interdependent operations on the system complete
successfully or all the operations are canceled. This paper describes
a non-intrusive approach to provide transaction support for HBase
based on optimistic concurrency model.

1. INTRODUCTION
NoSQL technologies such as HBase[4], Cassandra[5],
MongoDB[6] are becoming popular due to their ability to scale and
handle large volumes of data at breakthrough levels of cost and
query performance. However transaction support is lacking in these
NoSQL products. Without multi-row, multi-object transaction
support in NoSQL products, the application has to implement
transactions as part of its business logic. This makes development
and maintenance of applications complex.

The workloads such as online transaction processing (OLTP), event
processing, real-time analytics, etc. are characterized as operational
workload. These workloads typically have stringent requirements
in terms transactional data integrity, sub-second response time,
concurrency and availability. With the growing “Internet Of Things
(IOT)” there is a significant increase in number of data generation
sources, volume of data and the type of the data that needs to be
captured as part of transactions. These next generation operational
applications need transactional support on multi-structured data
types. For example, there are several Web2.0 applications, like
“online shopping”, “online gaming”, “online index updates” etc.,
that require transaction support.

Several of these next generation operational applications will
benefit from the flexibility in schema, data types and the scalability
of NoSQL products like HBase, Cassandra and MongoDB. But the

lack of transaction support is currently preventing from moving to
these NoSQL technologies.

There are many attempts in academia as well as the open source
community to provide transaction support for NoSQL products. In
this paper we describe a non-intrusive approach to provide
transaction support for HBase.

2. OUR SOLUTION
The design goal for our solution is to develop a non-intrusive
transaction system for HBase. Another aim is to make this solution
portable across different NoSQL technologies, thus no functional
dependency of HBase.

Our solution provides transaction support to HBase by leveraging
the versioning capability in HBase to implement snapshot isolation.
The transaction functionality is implemented in a highly available
centralized transaction server.

Figure 1, illustrates the architecture of the solution. The transaction
client provides transaction management APIs like
beginTransaction, endTransaction etc. It also extends the generic
HBase APIs, like get, put etc. to provide transactional support. The
transaction client intercepts the HBase APIs from an application to
provide transaction capabilities using the transaction server. It
leverages the multi-versioning feature of HBase to write in-process
transaction data into HBase tables.

mailto:Sandesh-adhyastha@hp.com
mailto:Sandesh-adhyastha@hp.com

118

The transaction server generates the transaction IDs, maintains
begin and commit timestamp and manages the state of transactions.
It implements the logic to resolve the conflicts during the
transactions. The transaction server also implements the logging
and recovery logic.

The transaction server maintains a table to track the status of
transactions. The transaction state can be in (a) begin (b) commit-
ready (c) committed (d) aborted. At the beginning of transaction,
the transaction server generates globally unique transaction IDs that
will have the value less than the epoch value, January 1, 1970. The
transaction ID is used as version number for writes (put operation)
from in-process transactions. The actual timestamps are used as
version number to write the committed records. The committed
records will always have the version numbers greater than epoch.
We effectively use this data to control the visibility of in-process
writes, thus provide snapshot isolation.

The transaction server maintains the timestamp value of the latest
committed transaction, which is called as Last Commit Timestamp
(LCT). The LCT value is assigned as the start time at the beginning
of the transaction and is used to define the snapshot for the
transaction.

The transaction server maintains all the modified row keys for a
given transaction in an in-memory table. It uses this information to
detect the conflict among concurrent transactions. The transaction
server uses the transaction start time (TS1) and the modified row
key set (RS1) to identify whether any transactions that are
committed after the time TS1 has modified any of the rows in RS1.
If yes it means the transactions are conflicting. In this case the
transaction server marks the transaction for abort.

On receipt of beginTransaction call, the transaction client contacts
the transaction server to get transaction ID and LCT. The
transaction server generates new transaction ID and adds it into its
status table. The transaction client uses the transaction ID as the
timestamp value for intermediate “put” operations. These “put”
values are also cached in the transaction client.

While reading data, in “get” and “scan” operations, the transaction
client first looks for the rows in the cache thus it will read its own
changes. If the rows are not in the cache, the “get” and “scan”
operations read the data from HBase table using LCT as timestamp
value, which indicates the snapshot of the database at the beginning
of the transaction.

At the time of commit the transaction client sends the modified
records to the transaction server to determine conflicts by other
concurrent transactions. The transaction server uses the modified
records and the transaction’s start timestamp to determine whether
any other transactions have modified and committed the same rows.
If there are no conflicts it generates a transaction commit timestamp
and sends it back to transaction client. The transaction server
updates the status of the transaction to commit-ready.

The transaction client performs the final “put” operations using this
commit timestamp. After completing the final “put” operations, the
transaction client acknowledges transaction server and the server
updates the transaction status as committed.

The transaction server updates the LCT value with the commit
timestamp of this transaction. At this point the records are
committed in HBase table and they are visible to other transactions.
If it finds any conflicts then it marks the transaction for abort and

updates the status as aborted. The transaction server sends abort
information to transaction client. The transaction client aborts the
transaction and returns to application. The client will not clean up
the intermediate records. The transaction server takes care of this
as explained below.

Figure 2, illustrates the sequence diagram for a successful
transaction. During the begin transaction call from application, the
transaction client calls transaction server to get the new transaction
ID (Txid) and last commit timestamp (LCT). The transaction client
intercepts the “ tget” call from the application client (also called as
client), checks for the corresponding record in its cache, if not
found uses the LCT as timestamp to make “get” call to HBase.
HBase returns the version of the record (rKey1, val1) that is visible
at timestamp LCT. The client then executes the business logic and
inserts the updated value (val2). The transaction client inserts this
record using the Txid to ensure this intermediate record is not
visible to other transactions. At the time of commit the transaction
client sends the modified records set (M_r, in this case only rKey1)
and the Txid to transaction server for detecting conflicts. In this
example, there is no conflict and server returns success with the
new commit timestamp (CT). The transaction client uses CT for
final “put” operation and on completion acknowledges transaction
server. The transaction server updates the transaction status and
LCT. The CT becomes the new LCT.

The transaction client will not delete the intermediate records
inserted with transaction ID as version. The transaction server
implements a "purger thread" to clean up these residual records in
the HBase table. The intermediate records modified by the
transaction has to be removed for both committed and aborted
transactions. The clean-up logic is same for both cases. The purger
thread runs in background at specified frequency and deletes the
residual records of the committed and aborted transactions.

The transaction servers implement a heartbeat mechanism to
determine the client failures. If the client fails during the execution
of transaction the server aborts the transaction. If the client fails
after the commit-ready state and before commit acknowledgement
the server makes the final “put” operation for the records modified
by this transaction.

The transaction server will be implemented as process pair to
provide high availability. If the primary server fails the backup will
take over.

119

The transaction server logs the transaction state, including order in
which they are okayed for commit into persistent space for
recovery. The key of the records modified by the transaction are
also logged for the commit-ready transactions. During the recovery
of transaction server it reads the log to determine the transaction
status. For the transactions that are in commit-ready state the server
builds the list of records modified by this transaction from the log
and inserts them into the HBase table with the transactions commit
time. For the in-process transactions it cleans up the intermediate
records by using the transaction id.

Our solution is non-intrusive and modular. It is not tightly coupled
to HBase implementation. The transactions are supported both for
the new tables as well as existing tables. The existing client
applications must be modified to use the new APIs provided by
transaction client to support transactions. The solution can be easily
extended to other NoSQL products with minimal changes to
transaction client.

3. EVIDENCE THE SOLUTION WORKS
We have implemented the transaction server and transaction client.
Tested it with a generic transactional application to validate the
functionality.

Listing 1 and 2 shows the code snippet for a sample HBase
application and the same application with transaction support.

The transactional application creates an instance of transaction
client (TClient) and uses the methods exposed by it to create and
commit the transaction.

Also it uses the “get” and “put” methods extended by transaction
client. Without transaction support the sample application produces
wrong results in multi-threaded environment.

To validate this we have developed a sample debit/credit
application. The application operates on a single accounts table that
contains the account identifier and the balance amount. The
application transaction (a) deducts a fixed amount from one
randomly selected account and (b) deposits the same amount in
another randomly selected account. The application does some
basic checks to ensure the debit and credit accounts are different,

the balance never goes below a minimal value etc. The correctness
of the transactions is measured by calculating the total sum of the
value in all the accounts.

The application is tested with two different modes, (i) Transaction
mode – wherein the application is linked with newly developed
Transaction Client and uses the transaction API’s offered by it, (ii)
Non Transaction mode – wherein the application directly uses the
API’s exposed by HBase. The application is run with different
configurations by varying (1) Total number of transactions (2) The
number of simultaneous transactions (or threads).

We have run the application with multiple different values for (i)
number of threads and (ii) number of transactions in a thread. The
tables 1 and 2 show the results for multiple threads with each thread
executing 100 transactions.

The first column represents the number of parallel threads; the
second column indicates the total number of transaction that is
tried. As mentioned earlier each thread runs 100 transactions. If the
random number generator generates the same number for both debit
and credit accounts then that transaction is not tried. Hence we see
the value in this column to be less than the expected value for some
cases – example row 3 (with transactions) has the value of 9998
instead of 10000. Third column indicates the number of completed
transfers in case of default HBase and the number of committed
transactions in the case of HBase-trx. The fourth column provides
the number of failed transfers in the default HBase and number of
aborted transactions in the case of HBase. The fifth column
provides the total sum of balance in all the accounts.

As we can see form the table 1, there are inconsistencies in default
HBase when run with parallel threads. The final balance is not same
as the original and indicates the data loss/corruption due to failures.
In case of “with transactions” (table 2) the transaction support
guarantees the consistency and we always get the correct balance.
We also see some failed transactions, indicated by “incomplete
transfers” column, which are due to the conflicts.

4. COMPETITIVE APPROACHES
There are few attempts to provide transaction support for HBase.
They fall into two main categories. One approach is to implement
the transaction support on client side. HAcid [1] and HBaseSI [2]
are two examples of this. They rely on additional metadata tables
being created in HBase.

HAcid [1] is implemented as client library. It modifies the user
tables in HBase to store additional metadata related to transaction
management. Concurrency issues are handled at the client library
by using the metadata information stored in user tables.

 Listing 1: Code sample without transaction support

Listing 2: Code sample with transaction support

120

HBaseSI [2] is a client library that maintains special tables in
HBase for supporting transactions. The transaction management
logic is implemented in the client side based on the metadata in
HBase tables.

The other approach is to implement a centralized transaction server.
Omid [3][7] is an example of this, which is quite similar to our
approach. Omid uses “transaction status Oracle” to manage the
transactions. Omid caches the transaction metadata on client side to
improve the performance. This results in multiple copies of
metadata and increases the data traffic between client and server.
Also maintaining the metadata adds additional overhead. The Omid
clients cache the intermediate modification and hence need larger
memory for long running transaction. This helps them to reduce the
number of “put” operations.

HBase-Trx [8] was another open source attempt from Apache
group to support transactions for HBase, which was later
discontinued. HBase-Trx is tightly coupled to HBase and hence
leverages the HBase code for transaction management and
recovery. The concurrency is handled by HBase-Trx server library,
which is implemented as an extension to HBase Region. The table
3 summarizes the characteristics of each of the solution.

5. Conclusion
We have presented a reliable and efficient implementation of
transaction support library for HBase which is non-intrusive in
nature. The approach does not need any changes to HBase schema
or tables. It is implemented as a light weight centralized transaction
server which provides the transaction management, conflict
detection, logging and recovery services. A light weight transaction
client library exposes the transaction support to users through
transactional APIs. We have evaluated the approach for
correctness.
As next steps we will measure the performance implications of the
newly introduced transaction server and optimize it for both the
latency and through-put.

6. References
[1] Mederos, A.:HAcid: A lightweight transaction system for
HBase. Master’s Thesis, Espoo, September 24, 2012, Aalto
University, School of Science, Degree program of Computer
Science and Engineering

[2] Zhang, C., Sterck, H.D.:HBaseSI: Multi-row distributed
transactions with strong snapshot isolation on clouds, Scalable
Computing: Practice and Experience, Scientific International
Journal for parallel and Distributed computing, Vol 12, No 2, 2011.

[3] Ferro, D.G.:Omid:Efficient Transaction Management and
Incremental Processing for HBase, Yahoo Inc..

[4] HBase: http://hbase.apache.org/

[5] Cassandra: http://cassandra.apache.org/

[6] MongoDB: http://www.mongodb.org/

[7] Junqueira, F., Reed, B., Yabandeh, M.:Lock-free Transactional
Support for Large-scale Storage Systems:IEEE/IFIP 41st
International Conference, Dependable systems and Networks
Workshop, Pages 176-181, June 2011..

[8] HBase-trx, https://github.com/hbase-trx, Git-Hub.

Parameters HBase Trans (HP) HAcid HBase SI HBase Trx Omid

Intrusive

Modifications to HBase Schema No Yes No No No

Modifications to HBase Table No Yes Yes No No

Modifications to HBase code No No No Yes No

Extensibility (to other NoSQL solutions) Yes No No No Yes

Centralized Server Yes No No No Yes

Transaction intelligence Server Client Client Server Server

Recovery

Server side, uses

the WAL to

persistent media

Not

Specified

Not

Specified

Server side.

Uses HBase

infrastruture

Not

Specified

Table 3: Comparison Table

