SortingHat: A Deep Matching Framework to Match Labeled
Concepts
(Demo Paper)

Sumant Kulkarni*
International Institute of Information Technology
Bangalore,
26/C, Electronics City, Bangalore India

sumant.k@iiitb.org

ABSTRACT

We report a framework called SortingHat to perform seman-
tic matching between labeled concepts in a partially labeled
corpora such as workflow data. We create a labeled term co-
occurrence graph as the representative data-structure of the
given corpus. The semantic matching between concepts is
performed using a variant of random walk algorithm on the
term co-occurrence graph. The SortingHat system takes a
set of concepts as input and generates a semantically match-
ing set of concepts for them. In this experiment, we use data
from bug tracking system of a large enterprise to demon-
strate the results.

Keywords: Semantic Matching, Labeled Concept Match-
ing, Deep Matching, Text Mining, Concept Matching

1. INTRODUCTION

Semantic matching can be defined as the identification
of semantically related objects of a domain for a given set
of input objects in the same domain based on the latent
semantics. Some examples of such semantic matching prob-
lems and their domains are given in table 1.

Large amounts of textual data like bug tracking system
snapshot, banking customer care logs, and tourist review
logs for the destinations get generated in the above men-
tioned domains. We can use these text corpora to solve
the kind of problems listed in table 1. Solving these prob-
lems help to speed up the processes in many such domains.
Hence, semantic matching is considered an important prob-
lem in text domain.

Semantic matching in text corpora aims to identify set
of semantically related concepts for given set of concepts.
Many times the textual data contains additional labeled in-
formation, like types associated with the data values, which

*We thank Paras Mittal and Dipesh Joshi for their help in
implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 20th International Conference on Management of Data (COMAD),
17th-19th Dec 2014 at Hyderabad, India.

Copyright (©)2014 Computer Society of India (CSI).

134

Srinath Srinivasa

International Institute of Information Technology

Bangalore,
26/C, Electronics City, Bangalore India

sri@iiitb.org

Sl. Semantic Matching Problem Domain
No
1 Identification of the resolvers for | Software
an issue in software industry
2 Identifying the best customer care | Banking
executive for the given type of com-
plaints like online banking login
failure
3 Identification of the best tourist | Tourism
destination for given calendar
month

Table 1: Examples of Semantic Matching Problems.

can be used in semantic matching process. There also can
exist some data values for which labels do not meaningfully
capture the type. We call such a label as pseudo-type. To-
gether, this kind of data is called “partially labeled data”.
For example consider a customer care system in banking do-
main. Table 2 shows hypothetical data collected over several
transactions. This log contains data like complaint id, cus-
tomer id, resolver, priority, which have type information.
However, there can be additional data columns like sum-
mary of complaint which are pseudo-types.

SortingHat aims to perform semantic matching for such
partially labeled data. An example of semantic matching be-
tween concepts on the data in table 2 could be — identifying
the best resolvers for a complaint related to “credit card” ac-
count type which also has “high” priority. Kulkarni et.al [1]
proposed a term co-occurrence graph based approach to per-
form the concept matching. The approach includes creat-
ing a co-occurrence graph of labeled and unlabeled terms
and running a “cash leaking” random walk on it to gener-
ate the matching output concepts. There have been earlier
attempts to use random walk to mine different kinds of se-
mantics. In [2, 3], authors propose a “cash leaking” random
walk to identify the topical anchor of a set of terms. Yaz-
dani et.al [4] present a random walk based framework for
semantic similarity calculation.

The SortingHat implementation is inspired from [1]. We
have been using a snapshot of a bug tracking dataset from
a big enterprise. The implementation aims at identifying
the best resolvers who can take up newly reported bugs.
The system also extends its functionality in identifying other

Comp | Cust Resolver | Priority | Account Conversation Summary

ID ID Type

aaa XXXX Anand High Corporate Faced issues with online access
of account information. System
was giving error 307. Requested
customer to login after 3 hours.

bbb yyyy Sahana Medium Credit Communication address needs

Card to be changed. Requested em-

ployee to send mail to customer
care email id with new address
proof.

Table 2: Data from a hypothetical banking

important aspects of a new bug like component, probable
priority and so on.

2. THE METHOD

As discussed earlier, semantic matching in text domain
is the process of identifying a set of concepts R for a given
set of concepts @ in a given corpus based on the latent se-
mantics. Identifying the probable defaulters from a banking
transaction dataset, identifying defective components using
the server logs, identifying an application software similar
to a given application software based on the description and
reviews are example of semantic matching.

This work uses partially labeled data as the corpus. Let
C be the set of concepts in the corpus. There are some
concepts which are identifiable with labels (or have attached
type information). We label the unlabeled concepts with
special label “concepts”. The set of all unique labels in the
corpus is represented as L.

We build a co-occurrence graph using C. In this graph,
every labeled concept co-occurs with every other labeled
concept in the same context. This co-occurrence graph is
formally represented as,

G = (C,E,w,L,7) (1)

where, E C [C]? is pairwise co-occurrences of labeled con-
cepts. v : C' — L represents a functions which assigns label
types to concepts. The function w : E — Z71 assigns edge
weight w(t,u) which is same as the co-occurrence count,
where t,u € C. This edges are undirected. We convert
the graph into generatability graph, using the procedure ex-
plained in [3].

The SortingHat algorithm takes a set of labeled concepts
Q = {q1,92,...,9m} as input and generates semantically
matching labeled concepts R = {ri,ra,...,7p} as result
from the co-occurrence graph G. For each ¢;, the algorithm
generates a set of neighbors N(¢;). A new set N(Q™), called
as neighbourhood closure, is generated by taking union of all
these set of neighbours. We generate the semantic context
S(Q*) by considering all the edges between all the concepts
in N(Q*). The details of the calculation of generatabil-
ity, neighborhood closure and semantic context are available
in [1].

To identify the semantically matching concepts R for Q,
we run “cash leaking” random walk algorithm [2]. We start
the random walk by distributing equal cash to each query
concept and zero cash to every other concept in S(Q*). After
reaching stationary distribution, we identify concepts with

135

customer care system.

higher cash accumulation and output them as R. These are
the concepts which are semantically related to the set of
labeled query concepts Q.

3. THE TOOL

The SortingHat tool is developed in Java environment.
The noun phrases are extracted using the Apache openNLP .
We generate the co-occurrence graph and store it in MySQL 2.
We are also parallely attempting to use Neodj 3 to store
co-occurrence graph. We have developed this tool as a web
application. Figure 1 shows the webpage to input the query.
The input concepts are entered as (term) : (type). For
example, performance:concept represents a concept named
performance of type concept.

The tool runs the “cash leaking” random walk using the
input and generates the semantically matching output for
it. The output is displayed in the form of a table, where
each column represents a type, as shown in figure 2. We
have intentionally blanked out some columns from the out-
put screen shot to hide sensitive information. The concepts
in the columns are ranked as per their semantic relatedness
to the query.

Entity Description

Project The name of the project.

Issue The Issue Id of the issue.

Resolver The person who resolved the issue.

Resolution State of the issue after resolu-
tion (Not a Bug, Duplicate, Fixed
etc.,).

Component Name of the project component.

Time Taken Time taken to fix issue.

Issue Priority | Importance of the issue.

Classification | Type of the fix (API, Code etc.,).

Root Cause Reason for the issue to arise.

Table 3: The different labeled concepts in bug track-
ing dataset.

As mentioned earlier, we are currently using a bug track-
ing system snapshot as the partially labeled dataset. We
have manually identified 9 types(lables) [1] in the dataset
as given in table 3. We similarly identified 3 fields in the

"https://opennlp.apache.org/
http://www.mysqgl.com/
http://www.neodj.org/

SortingHat

Random Walk based Entity (Labeled &wicepi) Matching

Please Enter the Input:
Crystal:concept, subreport:concept, performance:concept,
business_activity monitor:project

Example input (ignore quotes) - "java:concept, chava hirsh:resolver, xcp runtime:project”

Submit

copyright@sortinghat 2012-2014

Figure 1: Input Screen of SortingHat Web Application

'(-‘__ b localhost:8080/deepmatching/sortinghatwebapp/RandomwalkServlet +c| & B~ coogle

Entity (Labled Concepts) Matching Results

Input Query: "Crystal:concept, subreport:concept, performance:concept, husine%sﬁacﬁvityﬁmonitor:proje ct”

SL.No [Project Component Priority Classification |Resnlver Rootcause
B ; Data loss data
1 - Bi Tier 2 unavailable ‘B(Code
‘2 ‘ ‘ Tier 1 ‘Busines.s logic ‘ Documentation
B [[Tier 3 [User interface [[Design
: Localization -
4 ‘ ‘ Tier 4 Pt ‘ 3rd party issue
3 ‘ ‘ a4 ‘ ‘Api ‘ a4 New feature

Figure 2: Output Screen of SortingHat Web Application

dataset from where “concepts” can be extracted. They are
given in table 4.

The primary semantic matching problem in this data is
to identify the best suited resolver for a given new issue, for
which the information of Project, Priority, Summary and
Description is available. This would help the managers to
identify the resolver more efficiently. We can also extend
this to identify the component of the issue. For both the
use cases, the inputs are the values of Project, Priority, and
concepts from unstructured fields - Summary and Descrip-
tion. The input contains comma separated concepts, where
each concept has its type information separated by “:”. An
example query is given in figure 1. Further, we can also use
this framework to identify many other semantic similarities
like projects similar to other projects, resolvers similar to
other resolvers and so on.

The SortingHat framework can handle many other types

of generic semantic matching queries on given textual dataset.
It can take any coherent set of concepts and generate seman-

tically matching set of concepts for it. There are domains

like insurance claim management, bank customer grievance

resolution, and many other where such partially labeled tex-

tual data is available. There is a need to identify differ-

ent labeled concepts like claim resolver for the given inputs

like insurance claim. In such cases, SortingHat can come in

handy as a supporting tool.

4. CONCLUSION AND FUTURE WORK

SortingHat is a tool developed to identify semantically
related concepts for a given set of concepts. The tool ad-
dresses semantic matching in text domain. Many domains
generate textual data, and hence this tool can play an im-
portant role in semi-automating large number of important
tasks in those domains. The future work includes the de-

136

scription for
Release Notes

Column Description

Name

Summary Short description of the issue.
Description Detailed description of the issue.
Customer The message passed to the customer
Facing De- | to convey the existence of the issue.

It describes how the customer can ob-
serve the issues.

Table 4: The different fields contributing to concept
space in JIRA dataset.

velopment of a functionality to identify similar concepts of
same type for given input concept. This would help to sug-
gest more number of semantically similar concepts for the
input query.

S.
[1]

2]

3]

[4]

REFERENCES

S. Kulkarni, S. Srinivasa, J. N. Khasnabish, K. Nagal,
and S. G. Kurdagi. Sortinghat: A framework for deep
matching between classes of entities. In Data
Engineering Workshops (ICDEW), 2014 IEEE 30th
International Conference on, pages 90-93. IEEE, 2014.
A. R. Rachakonda and S. Srinivasa. Finding the topical
anchors of a context using lexical cooccurrence data. In
Proceedings of the 18th ACM conference on
Information and knowledge management, pages
1741-1744. ACM, 2009.

A. R. Rachakonda, S. Srinivasa, S. Kulkarni, and

M. Srinivasan. A generic framework and methodology
for extracting semantics from co-occurrences. Data &
Knowledge Engineering, 2014.

M. Yazdani and A. Popescu-Belis. A random walk
framework to compute textual semantic similarity: a
unified model for three benchmark tasks. In Semantic
Computing (ICSC), 2010 IEEE Fourth International
Conference on, pages 424-429. IEEE, 2010.

137

