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ABSTRACT

The growth of Big Data has seen the increasing prevalence
of interconnected graph datasets that reflect the variety and
complexity of emerging data sources. Recent distributed
graph processing platforms offer vertex-centric and subgraph-
centric abstractions to compose and execute graph analytics
on commodity clusters and Clouds. Näıve translation of ex-
isting graph algorithms to these programming models can
offer sub-optimal performance. We analyze the effective-
ness of PageRank, a popular graph centrality measure, for
a subgraph-centric programming model, and propose vari-
ations based on the existing BlockRank algorithm to im-
prove the performance. We evaluate these algorithms on
real-world graphs using the GoFFish platform on Amazon
EC2 Cloud VMs, and demonstrate that the proposed Sub-
graph Rank algorithm outperforms the native PageRank
and BlockRank algorithms, and is faster by 23 − 74% for
most graphs we evaluated, while achieving an equivalent
PageRank quality.

1. INTRODUCTION
Data processing has seen a sea change in the recent decade.

The term “Big Data” has been coined to reflect the potential
of – and complexity of – managing, exploring and analyz-
ing this massive influx, in order to offer knowledge and in-
sights. Google’s MapReduce [9] has proven seminal not just
in providing a framework for processing large data volumes,
but in allowing us to easily leverage distributed commod-
ity resources and Clouds to achieve the same. As such, the
characteristics of these large scale datasets have been evolv-
ing since the era of Google’s massive web logs, whose text
and tuple based processing motived MapReduce. We are
now seeing the pervasiveness of interconnected data – linked
data from the web [5], billions of social network users [36],
online sensing networks from Internet of Things [27], genome
networks [3], to name a few – that reflect the variety and
complexity of emerging Big Data sources.

This need for large scale graph processing has motivated
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the development of distributed graph platforms such as Pre-
gel [28], GraphLab [26], and Giraph++ [35]. Some of these
also operate on special graph structures, such as Power-
Graph [14] for power law graphs and GoFFish [34] for time-
series graphs. Such graph platforms complement the ex-
tensive work on parallel graph processing [2] on high per-
formance computing hardware by instead using commodity
clusters and Clouds that are more broadly accessible. At the
same time, these distributed platforms also, arguably, offer
simpler programming abstractions than, say, MPI to com-
pose graph applications and analytics. Vertex- [1, 28] and
subgraph- [34, 35] centric abstractions, for example, allow
users to compose the graph application from the perspec-
tive of a single vertex or subgraph and operate across itera-
tive supersteps, much like MapReduce allows users to write
their logic over individual key-value(s) pairs. The platforms
handle scalable, data parallel execution of the graph appli-
cations once mapped to their programming model. Recent
results have shown the subgraph-centric programming models
to out-perform the vertex-centric abstractions [34, 35], and
thus hold promise for wider adoption.

At the same time, the introduction of these novel graph
programming abstractions means that existing shared mem-
ory or parallel graph algorithms may not be a direct fit on
these platforms. And a näıve translation of existing al-
gorithms to these new abstractions may offer sub-optimal
performance. It is well known that algorithmic innovations
at design-time, that effectively use the underlying abstrac-
tions, can significantly improve the application performance
compared to relying exclusively on runtime optimizations
provided by the platform. As a result, there is a need to
examine where existing algorithms fit directly, need to be
adapted or new algorithms are required, to make the best
use of such platforms.

Graph centrality measures are a key analytic that is used
in real-world networks, from understanding critical junctions
in power grids [10] to the spread of ideas (or diseases) in
social (or human) networks. PageRank [29] proposed by
Google for web graphs is a special case of Eigenvalue Cen-
trality [7], and is often used as a canonical algorithm for
evaluating graph platforms. As graph structures and sizes
have evolved over the past decade, research into PageRank
has contributed more scalable algorithms that handle het-
erogeneous and distributed topologies. This paper continues
in that spirit.

There has been extensive work on improving the Page-
Rank algorithm to fit different platforms, including MapRe-
duce [4, 18, 20]. As a result, it is useful to understand how
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effectively the PageRank for a graph can be computed us-
ing such novel distributed graph processing frameworks –
where existing PageRank algorithms work, and when new
ones need to be developed.

To this end, we analyze how the PageRank algorithm and
its parallel variants map to a subgraph-centric programming
model, and their performance for real-world graphs, includ-
ing non-web graphs. In particular, we use the BlockRank
algorithm [22], that naturally appears to suit a subgraph-
centric model, as an algorithmic starting point and propose
variations to better leverage the subgraph-centric abstrac-
tion. In the process, we make the following specific contri-
butions in this paper:

1. We map the BlockRank algorithm to a subgraph-centric
programming abstraction, and analyze its deficiencies,

2. We propose variations of the BlockRank algorithm in-
cluding Subgraph Rank, and hypothesize their behavior
in a subgraph-centric model, and

3. We implement the PageRank, BlockRank variations
and Subgraph Rank algorithms using the GoFFish sub
-graph-centric distributed graph platform, and experi-
mentally evaluate their quality and performance across
diverse real-world graphs on Amazon EC2 Cloud Vir-
tual Machines (VMs).

The rest of the paper is organized as follows: in § 2, we
offer a background of PageRank, BlockRank and subgraph-
centric graph programming abstractions; in § 3, we intro-
duce variations to the BlockRank algorithm that can im-
prove its performance, and also propose the Subgraph Rank
algorithm as a suitable candidate for subgraph-centric pro-
gramming abstractions; in § 4, we evaluate our proposed
algorithms on three real-world graphs using the GoFFish
platform running on Amazon’s public Cloud; we discuss re-
lated work in § 5, and summarize our contributions and
provide directions for future work in § 6.

2. BACKGROUND
We provide background material on PageRank and Block-

Rank algorithms from prior literature, and subgraph-centric
programming abstractions that is our target distributed plat-
form.

2.1 SubgraphCentric Abstractions
Vertex-centric graph programming abstractions have been

proposed by distributed platforms like Pregel [28] and Graph-
Lab [26]. In Pregel, vertices of a graph are partitioned across
multiple machines, and the computation is performed from
the view of a single vertex in a pleasingly parallel man-
ner. Coordination between distributed vertices takes place
through synchronized message passing at superstep bound-
aries. The graph applications progress iteratively, one su-
perstep at a time, interleaving computing and communica-
tion. Bulk Synchronous Parallel (BSP) [12] processing al-
lows efficient bulk transfer of messages on slower, commodity
networks, while also avoiding potential race conditions and
circular dependencies of distributed task execution.

In a subgraph-centric programming abstraction, the com-
putation is performed at the coarser granularity of a sub-
graph, with synchronized messages passed by subgraphs to
its neighboring subgraphs at superstep boundaries. While

Algorithm 1 Subgraph-Centric PageRank (SGPR)

1: procedure Compute(Subgraph SG,Message msg[])
2: if superStep > MAX then ◮ Sanity check
3: VoteToHalt()
4: end if
5: if superStep == 1 then
6: for v in SG.vertices do
7: pr[v] = 1

|G.vertices|
◮ Initialize PR

8: end for
9: SendMessageToNeighbors(pr[])
10: else
11: sums[] = ComputePRSums(pr)
12: ◮ also includes local contributions
13: for v in SG.vertices do ◮ Update PR
14: pr[v] = 0.85×sums[v]+0.15× 1

|G.vertices|

15: end for
16: if superStep == 30 then
17: VoteToHalt() ◮ Halt after 30 iters
18: else
19: SendMessageToNeighbors(pr[])
20: end if
21: end if
22: end procedure

platforms like Giraph++ [35] treat each graph partition as a
(disconnected) subgraph, others like our own GoFFish plat-
form [34] identify weakly connected components within each
partition as units of subgraph execution. For consistency,
we assume the latter definition of subgraphs as weakly con-
nected components though our results translate to both def-
initions. Subgraph centric programming has been shown to
be faster than vertex centric programming due to better use
of shared memory algorithms on entire subgraphs, reduced
message passing overheads, and fewer supersteps to conver-
gence for graph applications.

GoFFish, used to evaluate our algorithms in this paper,
partitions graphs across multiple hosts or VMs, identifies
subgraphs within each partition, and stores the subgraph
and its attributes within its GoFS distributed storage. It
is optimized for a write-once, read-many batch processing
model. Subgraphs have local edges between their local ver-
tices, and remote edges connecting to subgraphs in other
partitions. Graphs are partitioned using METIS [23] to
minimize the edge-cuts between partitions and balance the
number of vertices per partition. Subgraph centric appli-
cations composed in GoFFish are executed on distributed
hosts using the Floe Dataflow engine which implements the
BSP execution model.

2.2 PageRank and BlockRank
PageRank is a centrality measure that indicates the rela-

tive importance of a vertex within a graph [29]. The Page-
Rank of a webpage (vertex) in a web graph, with hyperlinks
forming edges, is the probability that a web surfer who is
performing a random walk on the web graph will end up at
that page when following the links [7]. For a given webpage
v ∈ V in a web graph G = (V,E) with the set of vertices V

(webpages) and edges E (hyperlinks), its PageRank P(v) is
given by the following iterative logic:

P0(v) =
1

n
(1)

Pi+1(v) = α×

(

∑

ω∈I(v)

Pi(ω)

|O(ω)|

)

+ (1− α)×
1

n
(2)
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P(v) = Pi+1(v) | ∀v ∈ V, |Pi+1(v)− Pi(v)| < ǫ (3)

where n = |V| is the number of vertices in the web graph,
|O(v)| is the out-degree of the vertex v and I(v) is the set
of neighboring vertices that have incoming edges into v. α

gives the probability with which the random walk will follow
an outgoing link from a vertex, with (1−α) being the prob-
ability of taking a jump elsewhere. ǫ is a distance threshold
beyond which successive iterations of PageRank should not
change by, for the algorithm to terminate. Eqn. 1 initial-
izes the PageRank to the probability of starting at any ran-
dom vertex in the graph, Eqn. 2 is the iterative step which
updates a vertex’s PageRank values based on the weighted
values reported by its neighbors, while Eqn. 3 is the halting
condition where the PageRank has quiesced for all vertices
across the graph.

PageRank has been a de facto graph algorithm for vali-
dating graph platforms, and the two recent subgraph-centric
platforms, Giraph++ and GoFFish, have both mapped Page-
Rank using a subgraph-centric programming model. Alg. 1
lists the pseudo-code for a subgraph-centric PageRank. Af-
ter initialization the PageRank for all vertices in the sub-
graph in the first superstep, each subgraph sends the Page-
Rank values for its vertices to their neighboring vertices
present in remote subgraphs. In each subsequent super-
step, the subgraph uses the PageRank values for neighboring
vertices available from the received messages to update the
PageRank value for its vertices, taking a damping factor
into consideration. The algorithm either runs till a thresh-
old value of convergence is reached, or for a fixed number
of supersteps (30 shown in Alg. 1). As can be seen, the
subgraph-centric algorithm still iterates through every ver-
tex and applies the update in each superstep, mimicking
the behavior of a vertex-centric algorithm. This makes this
algorithm a näıve mapping to a subgraph-centric model.

Though PageRank was defined for web graphs and for link
analysis, the measure is used in many other domains [13] like
in Social Network, Citation Networks, and Road Network
analysis. Hence, scaling PageRank on distributed platforms
for diverse graphs has the potential to benefit multiple do-
mains.

Different flavors of PageRank algorithms have been pro-
posed, both to improve the quality of the ranks and to
speed up convergence. These include Topic-sensitive PageR-
anks [18], Personalized PageRanks [20], and BlockRank [22].
The BlockRank algorithm is based on the idea that a general
web graph has an inherent block structure, i.e., sets of web-
pages with a high concentration of interconnected hyper-
links, such as found between pages within a web domain.
The intra-block edges tend toward a clique-like structure
within a block, while the inter-block edges are sparse.

The generic BlockRank algorithm operates over three phases.
In the Local PageRank phase, localized PageRank values
are calculated for each vertex in a block by omitting all the
remote links between the blocks. Next, in the BlockRank
phase, a BlockRank value, which represents the relative im-
portance of each block in the graph, is computed. For this,
we consider each block as a meta-vertex in a meta-graph,
and edges between blocks as meta-edges. A variation of
the PageRank algorithm is performed on this meta-graph,
and the PageRank for each block (meta-vertex) is its Block-
Rank. In the last Global PageRank phase, we estimate the
initial PageRank values for each vertex by combining their
Local PageRank with the BlockRank, and then perform the

Set Blockrank start vector
Omit BR phase

Local phase

Set BlockRank start vector

Normalize Local PageRanks and BlockRank 
to get PageRank Start Vector

Run for multiple superSteps

Run for  multiple  superSteps

Done with maximum 
SuperSteps
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Subgraphs
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Figure 1: Flowchart of BlockRank algorithm phases.
Boxes listed horizontally show different subgraphs,
and boxes listed vertically span supersteps.

standard PageRank algorithm using these initial values.The
authors [22] show that the BlockRank algorithm converges
faster than traditional PageRank, and they offer theoretical
performance bounds for block-structured graphs.

3. BLOCKRANK & SUBGRAPH RANK
In this section, we discuss BlockRank and its variations

for a subgraph-centric model, and introduce the Subgraph
Rank algorithm.

3.1 Native BlockRank Algorithm (BRNA)
One of the challenges of running a näıve PageRank algo-

rithm using a subgraph-centric model (SGPR) is that its ex-
ecution behavior mimics that of a vertex-centric version [34].
In every superstep, the PageRank value of a vertex is up-
dated and passed as messages to its neighbors. There by,
the subgraph as a whole is unable to make progress without
each localized vertex making identical progress. Exposing
subgraph-level computation would mitigate this downside,
and effectively leverage the abstraction.

The BlockRank algorithm leverages the block structure
of the web to speed up the convergence of PageRank. A
graph is said to have a block-structure if, when considering
it as an adjacency matrix, there are blocks within the ma-
trix that have high intra-vertex edge connectivity and the
inter-block edge connectivity is sparse. This algorithm is
theoretically proven to perform better than PageRank for
block-structured graphs. Since blocks loosely correspond to
the notion of subgraphs, it is worthwhile mapping Block-
Rank to a subgraph-centric model to potentially do better
than näıve PageRank.

Fig. 1 shows the phases involved in performing BlockRank
using a subgraph-centric model. The corresponding pseudo-
code is listed in Alg. 2. There are three key phases in Block-
Rank, as mentioned before: (1) Local PageRank (LPR)
computation, (2) BlockRank computation, and (3) Global
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PageRank (GPR) computation. Each of these phases are
performed using a subgraph-centric abstraction, with com-
putation distributed across subgraphs (horizontal boxes in
Fig. 1) and proceeding iteratively over one or more super-
steps (vertical boxes).

The LPR phase runs in the first superstep and here, each
subgraph operates independently as its own graph, ignor-
ing remote edges to other subgraphs, and calculates the
PageRank for each of its vertices (pr[v]) using the standard
iterative PageRank algorithm, in-memory. This is shown
in Alg. 2, lines 6–17. It then proceeds to the BlockRank
phase where each subgraph (block) is treated as a vertex in
a meta-graph, and the BlockRank for each subgraph is cal-
culated, starting with an initial value that equals 1

|Subgraphs|

and iterating over supersteps to exchange BlockRank values
between subgraphs after each superstep (Alg. 2, lines 20–
32). This phase runs for a fixed number of supersteps – we
set this to 10 supersteps since that achieves a reasonable
BlockRank convergence for meta-graphs with up to 2700
subgraphs (meta-vertices) that we observe. The BlockRank
values (br) calculated at the end of this phase are used as
weighing factors to initialize the PageRank for each vertex
of the graph (Alg. 2, line 30), referred to as “distributing”
the BlockRank. Following this BlockRank distribution, the
GPR phase starts with these initialized PageRank values
and runs over multiple supersteps until convergence.

While we can map the BlockRank to a subgraph-centric
model, we perceive shortcomings to this algorithm (substan-
tiated in the evaluation, § 4) in practice:

• General graphs may not have a strong block-structure
to them, and as such the BlockRank algorithm may
not perform well for such graphs.

• The block structure only loosely maps to a subgraph.
Since the block sizes of graphs can vary widely, parti-
tioning these graphs can end up splitting blocks across
multiple subgraphs, thereby impacting the benefits of
block-level computations.

Hence, we propose a more robust solutions to calculat-
ing PageRank that goes beyond the native BlockRank algo-
rithm.

3.2 Dimensions for Varying BlockRank
We can vary the native BlockRank algorithm along sev-

eral dimensions to explore a variant that is more suitable
to subgraph-centric models and for general graphs. Some
of these change dimensions are discussed first, followed by
the variations of BlockRank algorithms that include one or
more of these. In this section, consider the graph G = (V,E)
with the set of vertices V and edges E is partitioned into a
set of subgraphs (blocks) Si = (Vi, Ei) ∈ S, where Vi ⊂ V

and Ei ⊂ E.

3.2.1 BlockRank Initialization Vector

SGC-inverse: The BlockRank phase has to start with
an initial BlockRank value for each subgraph (block) in
the first iteration. This choice is significant and affects the
BlockRank phase. A natural choice is a uniform distribu-
tion, similar to PageRank, across all the blocks given by
1
|S|

, where |S| is the count of subgraphs in the graph (hence,

subgraph count or SGC). So every subgraph gets the same
initial BlockRank value irrespective of its structure.

Algorithm 2 Subgraph-centric Native BlockRank (BRNA)

1: procedure Compute(Subgraph SG,Message msg[])
2: if superStep > MAX then ◮ Sanity check
3: VoteToHalt()
4: end if
5: if superStep == 1 then ◮ Local PageRank

6: for v in SG.vertices do

7: pr[v] = 1
|SG.vertices|

◮ Initialize PR

8: end for

9: do

10: sums[] = ComputePRSums(pr)

11: L1Norm = 0

12: for v in SG.vertices do ◮ Update PR

13: prev = pr[v]

14: pr[v] = 0.85×sums[v]+0.15× 1
|SG.vertices|

15: L1norm = L1norm+ Abs(prev - pr[v])

16: end for

17: while L1Norm > ǫ ◮ Test convergence

18: isBRActive = TRUE
19: else if isBRActive then ◮ BlockRank
20: if IsFirstBRSuperStep() then

21: br = 1
|Subgraphs|

◮ Initialize BR

22: else ◮ Update BR

23: sum = ComputeBRSum(msg[])

24: br = 0.85× sum+ 0.15× 1
|Subgraphs|

25: end if

26: SendMessageNeighbors(br)

27: if IsMaxBRSuperSteps() then

28: isBRActive = FALSE

29: for v in SG.vertices do

30: pr[v] = br× pr[v] ◮ Distribute BR

31: end for

32: end if
33: else ◮ Global PageRank

34: DoPageRank(SG, pr[], msg[])

35: ◮ VoteToHalt() on convergence
36: end if
37: end procedure

SG-by-G: Here the initial value of BlockRank is weighed
by the number of vertices contributed by the subgraph to the

entire graph, and given as |Vi|
|V|

for the subgraph Si, where

|Vi| is the number of vertices in Si and |V| is the number
of vertices in the entire graph. Intuitively, this is introduces
fairness in the allocation that accounts for the varying sizes
of different blocks.

3.2.2 BlockRank Distribution

Native: In the PageRank algorithm, a fraction 1
n

of
the PageRank values P(v) for a vertex v is passed at the
end of each iteration to each of its n neighboring out ver-
tices, uniformly. This fraction 1

n
is called the transition

probability distributed from vertex v to each its neighbors.
Similarly, in the BlockRank phase for the BRNA algorithm,
the BlockRank of each subgraph (block) is distributed to
its neighboring subgraphs after each BlockRank iteration.
This distribution logic is more complex as we consider both
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self-edges from a subgraph to itself, and the local PageRank
calculated in the LPR phase for vertices in that subgraph in
calculating the block -transition probability.

For a vertex v ∈ V, its local PageRank is given by LP(v).
The BlockRank at iteration 0 for a subgraph Si is given by
BR0(Si) =

1
|S|

. Now for every vertex v ∈ Vi for the subgraph

(block) Si, we use LP(v) to calculate the block-transition

probability, β
Si→Sj

k , from one subgraph Si to Sj at the kth

iteration.

∀Si = (Vi, Ei) ∈ S,we have
∑

v∈Vi

LP(v) = 1 (4)

∀Si, Sj ∈ S, we have

β
Si→Sj

k =
∑

v∈Si,w∈Sj ,〈v,w〉∈Ei&Ej

LP(v)

|O(v)|
(5)

BRk+1(Sj) = α×
(

∑

Si∈S

β
Si→Sj

k × BRk(Si)
)

+(1−α)×
1

|S|
(6)

where |S| is the number of subgraphs (blocks) in the graph,
〈v, w〉 ∈ Ei&Ej refers to edges incident from vertices in
Si to Sj , and |O(v)| and α follow same conversion as for
PageRank. Eqn. 4 asserts that the sum of local PageRank
values inside a subgraph is 1. Eqn. 5 calculates the block-
transition probability from subgraph Si to Sj if there is an
edge from one to the other. It also considers self-edges (Si →

Si) and local PageRanks; a fraction LP(v)
|O(v)|

of the BlockRank

will be passed to Sj . Eqn. 6 applies this block-transition
probability to get the BlockRank of the subgraph for the
next iteration.

So this gives consideration to self edges from the subgraph
to itself (βSi→Si

k ), and also includes the local PageRank so
that important local vertices within the subgraph pass on a
higher fraction of the BlockRank values to its neighbors.

PageRank-like: In this adaptation, self-edges within a
subgraph and local PageRank values for vertices in the sub-
graph are ignored in the block-transition probability. Only
edges that go from one subgraph to another are taken into
consideration. So we construct a meta-graph with the sub-
graphs as the meta-vertices and edges between subgraphs
as the meta-edges and run PageRank on the meta-Graph.
In the equation below, I() and O() refer to the in-coming
and out-going meta-vertices (subgraphs) connected to a sub-
graph.

BRk+1(Sj) = α×

(

∑

Si∈I(Sj)

BRk(Si)

|O(Si)|

)

+ (1− α)×
1

|S|
(7)

3.3 Variations of BlockRank Algorithm

3.3.1 Native BlockRank (BRNA)

BRNA is a direct implementation of the BlockRank to
a subgraph-centric model, as discussed in § 3.1 where each
subgraph is treated as a block. Since while partitioning the
graphs across distributed machines [23] we balance the num-
ber of vertices and minimizing the edge-cuts across parti-
tions, a subgraph partially behaves like a block. This uses
native BlockRank distribution logic and SGC-inverse initial-
ization Vector.

3.3.2 BlockRank with PageRanklike Distribution Logic
(BRDL)

Here the BRNA algorithm is used with a PageRank-like
BlockRank distribution Logic instead of the native logic.
Consequently, since the BlockRank phase effectively runs
a PageRank algorithm on the meta-graph, it is more intu-
itive. BRDL completes the LPR phase in the first superstep
and then proceeds to the BlockRank phase. We start with
SGC-inverse initialization vector and follow PageRank-like
BlockRank distribution for 10 supersteps, before switching
to a global PageRank phase.

3.3.3 BlockRank with SGbyG Initialization Vector
(BRIV)

In BRIV, the BRNA algorithm changed to use SG-by-G
initialization vector. Using SG-by-G ensures a fairer ini-
tial BlockRank value. One of the key rationales for using
BlockRank is to compute a better start value for the global
PageRank to allow rapid convergence. Vertices in smaller
subgraphs have a higher local PageRank value compared
to vertices in a larger subgraph since the sum of the local
PageRank is 1 in both cases. Since the local PageRank is
weighted with the BlockRank computed for that subgraph,
using SG-by-G as the initial BlockRank allows vertices in
larger subgraphs to regain their importance. As a result,
we get a better estimate of the relative importance of the
subgraphs, which is in the spirit of the original BlockRank
paper. Note that SGC-inverse is a special case of SG-by-G
where all subgraphs are of equal size.

3.3.4 BlockRank with PageRanklike Distribution Logic
and SGbyG Initialization Vector (BRDI)

Here, BRNA is modified to use SG-by-G as the initializa-
tion vector for the BlockRank Phase and uses PageRank-like
BlockRank distribution logic. This couples the features of
both BRDL and BRIV.

3.3.5 BlockRank without BlockRank Distribution (BRNO)

In this variation from BRNA, we skip running the Block-
Rank phase by setting the BlockRank value as 1

|S|
and pass-

ing it on to the initialization of the Global PageRank. We
retain the initialization vector of SGC-inverse. As discussed
before, it is observed that both large and small subgraphs
end up converging to a uniform BlockRank value at the end
of the BlockRank phase in the other variations. So this al-
gorithm altogether avoids the BlockRank phase and sets the
BlockRank directly to this uniform value, br = 1

|S|
(Alg. 2,

line 30).

3.3.6 Subgraph Rank (SGRK)

The Subgraph Rank algorithm operates by changing the
initialization vector for BlockRank in BRNO to SG-by-G,
thereby intuitively captures the spirit of the original Block-
Rank algorithm for a general graph. The local PageRank
phase is the same as for all BlockRank algorithms. In the
BlockRank phase, we set the initial BlockRank for each sub-
graph as SG-by-G, and pass this value on directly to the
global PageRank initialization without running any Block-
Rank supersteps. The pseudo-code for the Subgraph Rank
algorithm is identical to the BRNA algorithm, Alg. 2, ex-
cept that lines 20–26 to calculate BlockRank are replaced

by the function: br = |SG.vertices|
|Graph.vertices|

, i.e., the value of br
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is the ratio of the number of vertices in the subgraph to the
total number of vertices in the whole graph.

4. EXPERIMENTAL EVALUATION
We present an empirical evaluation of the baseline subgraph-

centric PageRank and native BlockRank algorithms, and
demonstrate the relative performance of the proposed Block-
Rank variants, including Subgraph Rank, compared to these
baselines. The algorithms are implemented on our GoFF-
ish subgraph-centric distributed graph platform, and run on
Amazon EC2 Cloud VMs. We expect these results to gener-
alize to other subgraph-centric platforms such as Giraph++,
when run on any commodity cluster or Infrastructure as a
Service (IaaS) Cloud. We discuss the graph datasets used
in the evaluation, the experimental setup and metrics for
success, before we present the results.

4.1 Graph Datasets
We choose three real-world graphs available from Stan-

ford’s SNAP graph repository for our evaluation. These are
summarized in Table 1. The graphs selected have diverse
topological characteristics, and span different application
domains, to ensure that our experimental results on qual-
ity, performance and scalability can be generalized. The
Amazon Product Network (AMZN)1is a small graph from
the eCommerce space, has a higher vertex degree (2.76)
and medium diameter (44). The California Road Network
(CARN)2is a medium sized graph from the transportation
domain with a large diameter (849) and smaller degree (1.4).
The Wikipedia Talk Network (WIKI)3is a larger social net-
work community graph with over 5 million edges and a
small diameter (9). These graphs have also been used in
literature for evaluating other graph platforms [16, 34]. All
these graphs are deployed as undirected.

Table 1: Graph datasets used and their properties
Graph Vertices Edges Dia-

meter
Vertex
Degree

AMZN 334,863 925,872 44 2.76
CARN 1,965,206 2,766,607 849 1.40
WIKI 2,394,385 5,021,410 9 2.00

4.2 Execution Environment
All the existing and proposed algorithms are implemented

and executed on the GoFFish graph analytics platform 4 [34].
Since the emphasis of this paper is on the improvements
offered by the algorithm, implementing them all on GoFF-
ish allows us to do a fair comparative evaluation. Alterna-
tives such as Giraph++ [35] that offer a subgraph-centric
model would also behave similarly. The subgraph-centric
programming model is a natural superset of a vertex-centric
programming model, and hence the näıve PageRank algo-
rithm can also be implemented on platforms like Apache Gi-
raph [34]. However, this does not extend to the other Block-
Rank algorithms that rely on the subgraph-centric model.

1http://snap.stanford.edu/data/com-Amazon.html
2http://snap.stanford.edu/data/roadNet-CA.html
3http://snap.stanford.edu/data/wiki-Talk.html
4http://github.com/usc-cloud/goffish

The GoFFish platform and the algorithms evaluated are im-
plemented in Java, and executed using JDK 1.7.

The experiments are run on Amazon Web Services (AWS)
IaaS public cloud 5. We use either m3.large or m3.xlarge
Elastic Compute Cloud (EC2) Virtual Machines (VMs), as
noted later. The specifications of the VM such as the num-
ber of virtual CPU cores and SSD-based local disk storage
are given in Table 2. The guest OS on the VM is based on
64-bit Linux.

Table 2: AWS EC2 VM Specifications
VM Type vCPU Memory Disk Bandwidth†

m3.large 2 7.5 GiB 32 GB moderate
(∼700Mbps)

m3.xlarge 4 15 GiB 80 GB high
(∼1100Mbps)

†
Indicative network bandwidth from

http://blog.flux7.com/blogs/benchmarks/benchmarking-network-
performance-of-m1-and-m3-instances-using-iperf-tool

All the VMs act as worker nodes for GoFFish, host the
graph partitions and execute the subgraph-centric applica-
tion. One these worker VM play an additional role of host-
ing the coordinator task, though it is a light weight process.
GoFFish is multi-threaded, with each worker using twice as
many threads as the number of CPU cores, and each thread
working on one subgraph at a time.

4.3 Evaluation Metrics
We propose quality and performance measures to evaluate

the success of the existing and proposed algorithms to calcu-
late the PageRank of the three graphs. The quality measure
calculates the proximity of the proposed algorithms’ solu-
tions to a near-optimal PageRank solution for the graph. We
define this near-optimal PageRank for a graph as the Page-
Rank value for its vertices arrived at the 100th iteration (su-
perstep) of running a näıve PageRank algorithm. We then
calculate the L1 Norm at the kth iteration of the PageRank
values provided by the evaluated algorithms (P⋆

k ), against
the PageRank values from this near-optimal solution (P100).
This Distance from Convergence (DFC) for each vertex v in
the graph at superstep k is given by:

DFC(k) =
∑

v∈V

|P⋆
k (v)− P100(v)| (8)

This approximation helps avoid the oscillatory nature of
the PageRank solution even as it incrementally narrows to-
ward convergence as the supersteps increase. For e.g., Fig. 2
shows the incremental L1 Norm between two successive su-
persteps for the CARN graph using a näıve PageRank algo-
rithm, and its oscillations past 55 supersteps. Due to this
behavior, using the L1 Norm between supersteps, which es-
timates the incremental change in PageRank value (Eqn. 3),
as a metric for convergence can lead to incorrect premature
halting. This approach has been used elsewhere too [35].

For our evaluation, we consider representative threshold
distance values for DFC: 0.1, 0.01, 0.001, and 0.0001 ; these
distances are in short denoted by ∆0.1, ∆0.01, ∆0.001 and
∆0.0001. Depending on the quality of the PageRank results

5http://aws.amazon.com/ec2
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Figure 2: L1 Norm between PageRank values of suc-
cessive supersteps for CARN using SGPR.

required for a graph, it suffices to iterate the algorithm till
its PageRank reaches within one of these four ∆ thresholds.

The performance measures we consider include the num-
ber of supersteps and the wall clock time (Makespan) the
proposed algorithms take to reach within a particular ∆
threshold from the near-optimal solution. We also con-
sider the scalability of the algorithms given by the observed
speedup as we increase or decrease the number of VMs on
which the algorithms are run.

4.4 Baseline Experiments
Our prior work has shown that a näıve subgraph-centric

implementation of the PageRank algorithm (SGPR) is only
comparable to, but does not outperform, the vertex-centric
PageRank algorithm [34]. The BlockRank algorithm [22],
intuitively, is expected to improve the performance by lever-
aging the availability of the entire subgraph in local memory.
We initially evaluate the effectiveness of this native Block-
Rank algorithm (BRNA), and compare it with the SGPR
algorithm. Unless otherwise noted, all experiments are run
thrice and the average of their values plotted.

We run the SGPR and BRNA algorithms on the AMZN
and CARN graphs partitioned across 6 m3.large VMs, and
run them to 100 supersteps. At every superstep, we record
the DFC for the graph, and plot it in Fig. 3.

We see that the näıve Subgraph-centric PageRank, SGPR,
that we wish to out-perform continues to converge in fewer
supersteps than the native BlockRank algorithm, BRNA.
BRNA takes 319 secs and 113 secs to run for 100 super-
steps for AMZN and CARN, respectively, compared 321 secs
and 86 secs for SGPR. While BRNA seems incrementally
slower, the reality is worse when we consider the superstep
and time at which BRNA reaches the ∆0.0001 threshold. For
AMZN (Fig. 3a), BRNA reaches the threshold at superstep
70 (211 secs) and SGPR reaches it at superstep 31 (97 secs),
while for CARN (Fig. 3b), BRNA reaches ∆0.0001 at su-
perstep 74 (91 secs) and SGPR reaches it at superstep 32
(43 secs). So BRNA is almost twice as slow as SGPR in
reaching convergence.

This is counter-intuitive, but can be explained. First,
BRNA is reliant on a strict block-like structure of the graphs
seen in web graphs, with subgraphs having a high edge den-
sity that borders on cliques [22]. The graph datasets from
real-world networks that we consider do not have such an
extreme block structure, and consequently the algorithm
performs worse. Second, while GoFFish’s partitioning algo-
rithm (METIS) tries to reduce edge cuts between partitions

and then identifies subgraph within each partition, the qual-
ity of partitioning may result in small subgraphs with just
100′s of vertices, or split a large block across two subgraphs
in different partitions. As a result, we see that BRNA is
not usable as is for the general class of graphs, and for a
subgraph-centric paradigm. This empirically motivates the
need for better PageRank algorithms that can leverage the
subgraph-centric programming abstraction that is available.

Note that the near-optimal solution is calculated using
SGPR’s PageRank value at superstep 100, and one would
expect that the DFC for SGPR at superstep 100 to be 0
in Fig. 3. However, this is not the case since every run of
the algorithm does not deterministically produce identical
PageRank values. As a result, the DFC proximity measure
is a more appropriate metric. Even there, having a DFC
value smaller than 0.0001 may not be meaningful. So we
adopt ∆0.0001 as our upper bound of PageRank quality.

4.5 Quality Analysis of BlockRank Variations
We evaluate the proposed five variations to the Block-

Rank algorithms (BRDL, BRIV, BRDI, BRNO) from
§ 3, including the Subgraph Rank (SGRK) algorithm, and
compare them against the SGPR and BRNA baseline algo-
rithms. Fig. 4 shows the DFC for these seven algorithms for
the AMZN and the CARN graphs when run on 6 m3.large

worker VMs to 100 supersteps. We can make several obser-
vations from these plots.

The DFC for BlockRank variations are affected by the
three phases of their algorithm: LPR, BlockRank and GPR.
The artifact of LPR phase is seen in the DFC value at
the initial superstep, of BlockRank phase (if present) over
the next 10 supersteps, and the GPR phase for subsequent
supersteps. Overall, we can see that SGRK consistently
outperforms all the other algorithms, while the BlockRank
variants, BRNA, BRDL, BRIV, BRDI, and BRNO under-
perform the baseline SGPR. However, there are subtle but
consistent patterns unique to each phase, and each algorith-
mic variation that reflects the different initialization vectors
and BlockRank distribution logic that are attempted. We
discuss these next to help explain how SGRK is a successful
refinement of the other BlockRank variations.

The BlockRank algorithms that use the native initializa-
tion vector of SGC-inverse – BRNA, BRDL and BRNO –
end up with a larger distance from convergence at the first
superstep, with a DFC value > 1.0. However, the algorithms
that use the proposed alternative SG-by-G initialization vec-
tor end up with a lower (better) DFC value at their initial su-
perstep (e.g. < 0.1 for AMZN and < 0.001 for CARN). This
confirms our hypothesis that using a normalized BlockRank
initialization value that considers the number of vertices in
the subgraph is fairer and offers a better initial estimate of
the eventual PageRank value.

In the initial supersteps, when the BlockRank phase is
taking place, we see the distinctive behavior of the algo-
rithms. BRNA and BRIV both use the native BlockRank
distribution logic that not only includes remote edges in its
computation of BlockRank but also the internal edges within
a subgraph and the local PageRank for their vertices (Eqn. 6.
At the end of the BlockRank phase, the DFC for both these
two algorithms end up at near identical points – gradually
decreasing from a high DFC for BRNA, and sharply increas-
ing from a lower DFC for BRIV to ∼ 1.0 for AMZN. Even
when using the alternative PageRank-like distribution logic
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Figure 3: DFC at every superstep, using SGPR and BRNA algorithms, for AMZN and CARN graphs.
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Figure 4: DFC at every superstep, using SGPR, the five BlockRank variations – BRNA, BRDL, BRIV,
BRDI and BRNO – and SGRK algorithms, for AMZN and CARN graphs.

for BRDL and BRDI, we see a similar trend whereby the
BlockRank phase causes the DFC values to converge to a
similar point of ∼ 0.4 for AMZN, though this value is closer
to convergence than using the native distribution. In effect,
the BlockRank phase, using either of the distributions, ef-
fectively converges to a specific value that does not offer any
benefits. We observe that this constant value is close to 1

|S|

for the native BlockRank distribution.
Note that during the BlockRank phase, we assume that

the PageRank value for each vertex in a subgraph at each
superstep is the product of its local PageRank from the LPR
phase and the current BlockRank value for the subgraph at
that superstep. This allows us to compute the DFC at each
superstep. Also, since the BlockRank phase operates on
the meta-graph that is distributed across p partitions, the
maximum diameter of the meta-graph is p, and this leads
to the BlockRank values converging rapidly within a few
supersteps.

In fact, BRNO, that skips having a BlockRank phase and

directly uses a constant value as the BlockRank manages
to make steady progress in converging during the 10 Block-
Rank supersteps it would otherwise have spent calculating
BlockRank. The slope of the reduction in DFC is steady for
the five BlockRank variants once they reach the global Page-
Rank phase. Hence the initial PageRank at the start of the
GPR phase impacts how quickly the algorithms converge.

SGRK, however, performs significantly better than the
other BlockRank variations as well as SGPR. It leverages the
best features of using a fair initialization vector like BRIV
and BRDI, giving it an early advantage, and also avoids the
pitfalls of the BlockRank phase, like BRNO. The impact
of the initialization phase using the normalized SG-by-G
weights is tangible. We see that the DFC at the start of the
global PageRank in superstep 2 for SGRK is much smaller
than the initial DFC for SGPR in superstep 1, with DFC val-
ues of 0.03291 vs. 0.21355 for AMZN (Fig. 4a), and 0.00042
vs. 0.22030 for CARN (Fig. 4b). This order(s) of magni-
tude improvement in the initial BlockRank phase is the key
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Figure 5: DFC at every superstep, using SGPR and
SGRK algorithms, for WIKI graph.

benefit that we expect from leveraging the subgraph-centric
programming abstraction. The subsequent supersteps, once
we are in the global PageRank phase, show more modest
reductions in DFC that is comparable to SGPR.

This benefit extends to the WIKI graph too. Fig. 5 shows
the DFC for the WIKI graph when running SGPR and
SGRK on 6 m3.xlarge worker VMs to 100 supersteps – the
larger VMs are necessary to ensure that the graph parti-
tions and messages buffered at the end of each superstep fit
in memory. We see that the SGRK has a DFC of 0.22010
at superstep 2 while SGPR has a DFC of 1.19161 when it is
initialized, and SGRK also has a sharper convergence slope
for subsequent supersteps than SGPR.

As such, SGRK is qualitatively better than the other
BlockRank algorithms or the näıve PageRank algorithm.
The local PageRank values which we compute in the first
superstep are relatively close to the near-optimal PageRank
values. This is thanks to the partitioning that is done during
graph deployment to minimize edge cuts across partitions
and balance the number of vertices in each partition. This
has the effect of identifying block-structures that may exist,
and manifesting them as subgraphs that are more generally
applicable to even graphs without a strong block structure
(like CARN). When normalizing the local PageRank values
to bootstrap the global PageRank phase, we factor in the
fraction of vertices held by the subgraph as it enables fairer
allocation and is robust to for subgraphs of varying sizes

4.6 Performance Analysis of BlockRank Vari
ations

Performance is another important metric which deter-
mines the success of an algorithm. The proposed algorithms
have different time complexities for their different phases.
For the LPR phase, the time complexity is O(m×(V MAX

i +
EMAX

j )), where each in-memory iteration m is linear in
terms of vertex count and edge count of the largest subgraph.
For the BlockRank phase, the time complexity is similar
since it is like PageRank applied to the meta-graph formed
from the subgraphs as vertices: O(10 × (|S| + Eremote

i )),
where 10 is the constant number of supersteps the Block-
Rank phase runs for, |S| is the number of subgraphs (meta-
vertices) in the graph and Eremote

i is the number of remote
(meta) edges. For the GPR phase, the time complexity is
O( q

p
×(|V|+|E|)) where |V| and |E| are the number of vertices

and edges for the whole graph, p is the number of partitions,
and q is the number supersteps taken to converge to a re-
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Figure 6: Time taken to reach ∆0.0001 (primary
Y Axis, bar) and superstep reached at (secondary
Y Axis, line), using the different algorithms, for
AMZN and CARN graphs.

quired ∆ value. As we can see, the LPR and BlockRank
phases have much smaller time complexity than the GPR
phase, and hence the more progress that can be made in the
former toward convergence, the better the performance.

We quantify the performance of these algorithms by plot-
ting the time that they take to achieve ∆0.0001, and the
superstep that they achieve this in. Fig. 6 shows these plots
for the five BlockRank variations and the two baseline algo-
rithms for AMZN and CARN. These were run on 6 m3.large
worker VMs.

The BlockRank algorithms spend the first few supersteps
in the initialization and LPR phases, after which they switch
to the GPR supersteps that is similar to SGPR. For all al-
gorithms, the time taken per superstep in the GPR phase is
uniform and observed to have a linear time complexity. So
we see from the figure that the number supersteps and the
time taken are usually proportional (line and bar graphs).
For e.g., we observe (not plotted) that for AMZN, both
SGPR and SGRK take 3.2 secs per superstep, with less
than a second spent in the initial supersteps for SGRK. On
the other hand, for CARN, both SGPR and SGRK spend
0.66 secs per superstep while the initialization superstep
takes about 29 secs for SGRK. This is because, CARN has
about 4× more vertices and edges than AMZN, and the
LPR phase in each subgraph takes longer to converge to an
L1 Norm of 0.0001. This slower LPR phase also explains
why SGRK takes about 41 secs to converge to ∆0.0001 de-
spite reaching there in 6 supersteps. The WIKI graph takes
about 123 secs per superstep for SGPR and SGRK, and a
relatively modest 36 secs is spent in LPR for SGRK. Note
that WIKI runs on an m3.xlarge machine which is twice as
capable as m3.large that CARN runs on. Most of the time
(97%) per superstep for WIKI is taken for passing PageRank
update messages over the network between supersteps, com-
pared to the time spent on computing the PageRank (3%).

As we can see from Fig. 6, SGPR and SGRK reach ∆0.0001

earlier than the other BlockRank variations. BRNA is the
slowest due to poorer BlockRank initialization vector and
the time spent on the BlockRank phase. But this extra time
taken during the initial supersteps does not offer a faster
convergence. The other BlockRank variants are marginally
better than the baseline BRNA. We also note that SGRK is
consistently faster than SGPR for both AMZN and CARN,
giving 23% and 2% speed improvements, respectively. Also,
while CARN is a larger graph than AMZN, it converges
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faster. This is because CARN has a much larger diame-
ter than AMZN, which means subgraphs are sparsely con-
nected, and hence local PageRank values dominate and net-
work-overhead due to edge cuts across partitions is lower.
Since the algorithms are often network bound than compute
bound, this leads to a lower per-superstep time for CARN.

The performance benefits of SGRK over SGPR is even
better, in many cases, when a lower PageRank quality is
adequate. Fig. 7 shows the time taken to reach quality val-
ues of ∆0.1, ∆0.01, ∆0.001 and ∆0.0001 for AMZN, CARN
and WIKI graphs for both these algorithms. These were
run on 6 m3.large worker VMs for AMZN and CARN, and
on as many m3.xlarge VMs for WIKI. SGRK for AMZN
converges to ∆0.01 49% faster than SGPR, while it con-
verges to ∆0.0001 23% faster than SGPR. Similarly, we see
that the time for SGRK on WIKI is smaller than SGPR by
69%, 52%, 46% and 43% for ∆0.1, ∆0.01, ∆0.001 and ∆0.0001,
respectively. This means that SGRK gives comparable re-
sults as SGPR in half the time for WIKI, saving between
11 − 40 mins. These indicate diminishing returns as we
run more supersteps: the rapid gain in convergence distance
within the first few supersteps of the Subgraph Rank is mit-
igated as more time is spent on the GPR supersteps.

SGRK for CARN does not outperform SGPR for larger
values of DFC, above 0.0001. Since CARN has a large di-
ameter of 849, the LPR phase took much longer to converge
to an L1 Norm of 0.0001. So even though the GPR super-
steps were fewer to reach a higher quality, and each GPR
superstep is faster, the initial overhead of LPR cannot be
surmounted. In fact, just the LPR phase lands the DFC
value at < 0.001, and the incremental time in the GPR
phase to reach ∆0.0001 is relatively negligible.

4.7 Scalability of Subgraph Rank
Lastly, we examine the scalability of these SGRK algo-

rithm as the graph is partitioned to 3, 6 and 9 worker VMs
for AMZN and CARN. We use the time taken to reach Page-
Rank qualities of ∆0.001 and ∆0.0001 to estimate the scaling,
and these are plotted in Fig. 8. We see that for AMZN,
there is a linear speedup as the number of VMs increases
from 3 to 6 to reach both ∆0.001 and ∆0.0001, with the time
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taken reducing from 142 secs to 74 secs. However, this
benefit flattens out when moving from 6 to 9 VMs, with
only an ∼ 8% reduction in time. For CARN, the scaling is
more gentle, giving a 25% and 66% speedup with a 2 × and
3 × more VMs. Increasing the number of VMs can increase
the degree of parallelism but also cause more (and costlier,
due to network I/O) supersteps to be required in the GPR
phase. Having a fewer VMs can help identify larger blocks
(subgraphs) per partition, and the LPR phase can poten-
tially find an better quality initial value for the GPR that
requires fewer steps to converge. However, running LPR on
larger blocks (subgraphs) also increases the time complexity
for it. As such, there may be a sweet spot of number of VMs
for each graph that offers the best time to cost ratio.

5. RELATED WORK
There as been a large body of work on scalable graph

processing platforms as well as algorithms for PageRank.
We can broadly classify large scale graph processing plat-

forms as shared memory systems running on individual ma-
chines, parallel processing systems that use high-performance
and accelerate hardware, and distributed computing sys-
tems that scale on commodity hardware. Shared memory
graph analysis systems [33]6 offer memory efficient graph
data structures to load and analyze networks, along with
optimized graph kernel algorithms, but offer limited scala-
bility. Some provide fast data structures such as indexes on
top of large graphs to optimize the design of graph algo-
rithms such a reachability queries [31]. Yet others provide
domain-specific language (DSL) for easing the composition
of graph analytics using richer abstractions like iterators,
traversers and reducers, with a compiler that generates op-
timized OpenMP applications [19]. These shared memory
systems however suffer from a hard memory limit.

Parallel graph processing frameworks such as the Paral-
lel Boost Graph Library [15] provide graph APIs that are
transparently mapped to MPI-based execution on HPC clus-
ters, with some also mapping kernel algorithms like sin-
gle source shortest path onto GPU accelerators [17]. Oth-

6http://snap.stanford.edu
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ers offer a more traditional programming abstraction like
BSP [12] but for massively multi-threaded systems like the
Cray XMT [11]. However, access to such high end HPC
systems is limited for a majority of users.

Distributed computing platforms such as commodity clus-
ters and Clouds offer a more democratized access numerous
frameworks for distributed graph processing [26,28,32,34,35]
have emerged recently. These offer simple yet scalable pro-
gramming abstractions such as vertex or subgraph centric
models [28, 34, 35], provide a shared-memory view over dis-
tributed machines [32], or have specialized graph libraries
suited for domains like machine learning [26]. Our work
fits in this space, and specifically explores the use of novel
abstractions such as subgraph-centric programming. How-
ever, the recency of these systems means that the suite of
available distributed algorithms is limited [30] and conse-
quently, their scalability for many graph algorithms is un-
known. In this paper, we try to explore algorithmic adapta-
tions of PageRank to effectively leverage these distributed
graph programming abstractions.

Similar to GoFFish, Blogel [37] provides a block-centric
graph parallel abstraction, which additionally uses a Graph
Voronoi Diagram (GVD) partitioner to improve the scal-
ability. They implement näıve PageRank and BlockRank
without algorithmic optimizations, but handle the problem
of PageRank loss due to sink vertices. In our algorithmic
contributions, we efficiently compute the PageRank values
rather than perform platform-level optimizations. Their re-
sults too show that BlockRank is much costlier than näıve
PageRank, due the extra, unnecessary computations caused
by poor Global PageRank initialization; this short-coming
has been addressed in our work.

Significant research has gone into distributed algorithms
for PageRank for partitioned graphs. Broder et al. [6] use
an approach similar to BlockRank, but they compute ap-
proximate PageRank and not the actual PageRank. Their
method involves computing eigenvectors, which can get costly
for larger graphs. Qiuhong et al. [25] explore the notion
of locality in a distributed system when running PageRank
on MapReduce. They gain performance by reducing the
number of MapReduce jobs per iteration, which is achieved
by using subgraph as a processing unit. However, this ap-
proach resembles the näıve PageRank algorithm using a Sub-
graph Centric Abstraction, and MapReduce does not offer a
natural way to represent iterative graph processing without
costly disk I/O.

Davis et al. [8], try to estimate the global PageRank of
a community by selectively crawling the non-local vertices
after computing the local PageRanks to convergence in the
community. Communities have a block-like structure with
high internal edge degree and sparse remote edge-cut. They
avoid running the PageRank algorithm on the whole graph
but like us, they compute the local PageRanks is a commu-
nity and then use these to estimate the Global PageRanks of
the vertices in that community. We have generalized this ap-
proach to operate on dense or sparse subgraphs, and demon-
strated the efficacy of this technique to diverse graphs. Kam-
var et al. [21] define adaptive methods for PageRank con-
vergence. They use the idea that several vertices reach their
convergence well ahead of others, and hence they speed-
up the rest of the algorithm by pruning these converged-
vertices. Using this heuristic, they avoid redundantly re-
computing the PageRank to offer performance gains. Such

pruning can be adopted to our Subgraph Rank algorithm
too as an extensions, as has been shown for performing top-k
betweenness centrality using a subgraph-centric model [24].

6. DISCUSSION AND CONCLUSIONS
In this paper, we have identified deficiencies in natively

mapping PageRank and BlockRank algorithms to a subgraph-
centric model, and propose alternate algorithmic strategies
for BlockRank. One such Subgraph Rank (SGRK) variation
demonstrably outperforms the baseline and other Block-
Rank alternatives. Algorithmically, Subgraph Rank is bet-
ter than BlockRank as it omits unnecessary input-specific
optimizations; computing block-level PageRank which is neg-
atively impacts the general case.

Considering the wide applications of PageRank, we needed
a more general and better algorithm which improves the
scalability and performance of PageRank. The global Page-
Rank computation step of the BlockRank algorithm is costly
since it requires more supersteps to converge than the Sub-
graph Rank (and even PageRank) algorithm due to the
poor initialization values. Blocks of varying sizes and im-
balance in the remote edges deteriorates the performance of
the BlockRank algorithm, and this was motivates the need
for Subgraph Rank. Subgraph Rank is a more general solu-
tion than BlockRank, and also scales better, partially due to
the intelligent choice of initialization vector for the Global
PageRank phase.

SGRK shows a performance gain of between 23− 74% for
equivalent PageRank quality, for AMZN and WIKI graphs;
its performance matches SGPR for PageRank qualities of
∆0.001 or better for CARN. SGRK successfully exploits the
subgraph structure of the graph to offer high quality ini-
tial PageRank values from the LPR and BlockRank phases
that help it to rapidly converge during the GPR phase. As
such, our work shows the need for developing new algo-
rithms or adapting existing ones to best utilize the inno-
vative graph programming abstractions and storage models
that are emerging.

Small-world networks like WIKI graph have a high clus-
tering coefficient, and are sparsely connected with a low
diameter. For such graphs the performance improves for
Subgraph Rank due to the head-start they get in the local-
PageRank (in-memory) phase, i.e., when well partitioned,
the high clustering coefficient and sparse connectivity en-
ables local PageRank values to be more significant. How-
ever, if the number of partition is much higher than the
diameter of the graph, then the initial Global PageRank val-
ues can deteriorate the performance, and this is something
we will study in the future. Similarly, for Barabasi-Albert
model (Power Law) graphs, we have low diameters and the
clustering decreases as the size of the graph increases. Hence
with an optimal number of partitions for a given graph, the
performance of Subgraph Rank will be better than Page-
Rank. The effect of increase in the number of partitions is
something that can be studied both empirically and theo-
retically.

As part of future work, we propose to examine the scal-
ability of the SGRK algorithm to see if shows weak scaling
with any of the topological features of the graph such as
edge cuts. We also plan to investigate other graph algo-
rithms that can benefit from subgraph centric abstractions.
Heuristics like graph pruning are also viable in offering fur-
ther performance gains.
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