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ABSTRACT
Utility episode mining has emerged as an interesting and
challenging research topic in data mining. It finds appli-
cations in anomaly detection, biomedical data analysis, pre-
dicting stock trends etc. The number of high-utility episodes
that can be extracted from a sequence depends upon the
value of minimum utility threshold. It is often difficult for a
user to find a suitable threshold value which fits their pur-
pose. The sequence can generate many high-utility episodes
at low threshold value and very few episodes at higher thresh-
old values. In order to relieve the user from this tedious
task, we propose an algorithm for mining top-k high utility
episodes from a complex event sequence. The parameter k
can be set by the user according to his/her needs. We also
propose effective strategies for raising the threshold value
in order to prune the search space effectively. We conduct
extensive experiments on real and synthetic datasets and
the experimental results demonstrate the effectiveness of our
proposed strategies in terms of total execution time and the
number of candidate episodes generated.

1. INTRODUCTION
Frequent pattern mining finds patterns from a database,

which have frequency no less than a given minimum support
threshold. Frequent pattern mining finds applications in
market-basket analysis, mining association rules [23], plagia-
rism detection and biomedical data analysis [30]. As types of
data vary from one application to another, researchers have
developed various frequent pattern mining algorithms. For
example, frequent itemset mining [16] deals with transaction
data, sequential pattern mining [27] operates on sequence
data, frequent episode mining [24] works on long event se-
quence, and frequent pattern mining in data streams [19].
The algorithms developed for mining frequent patterns have
mostly employed the monotone/anti-monotone property to
prune the exponential search space effectively. The mono-
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tone property states that the subsets of a frequent pattern
are also frequent and the anti-monotone property states that
the supersets of an infrequent pattern are also infrequent.

However, the frequent patterns extracted can be of low-
profit value. The concept of high-utility pattern mining was
introduced to capture the notion of utility, which has been
observed in real life. High-utility pattern mining finds pat-
terns from a database which have their utility value no less
than a given minimum utility-threshold. The utility func-
tion measures the importance of a pattern and varies ac-
cording to the application. For example, in a retail store
domain, a utility function can measure the profit made by
the store by selling the items in the itemset together over
a period of time. High-utility pattern mining has wide
range of applications in cross-marketing in retail stores [8,
20], web-click stream analysis [18], medicine [25] etc. High-
utility mining has also been applied with other mining tech-
niques like high-utility sequential pattern mining [34, 31],
high-utility pattern mining from a transaction database [5,
7, 10], mining high-utility patterns from a data stream [3],
mining utility-frequency skyline pattern [11] and high-utility
episode-pattern mining [32].

Mining high-utility episodes from a customer shopping se-
quence may discover patterns which may help in discovering
the purchasing behaviour of customers. In this scenario, the
items purchased by a customer in a transaction can be rep-
resented as events occurring at a time point. High-utility
episode mining can also be used for stock prediction or in-
vestment [21, 22]. Some algorithms [26, 14] have been pro-
posed to mine high-utility episodes from simple event se-
quences, where only one event occurs at a point in time.
However, complex event sequences often occur in real life
and has many applications as mentioned by Wu et al. [32].
Recently, Wu et al. [32] proposed an algorithm UP-Span to
mine high-utility episodes from a complex event sequence.
The number of high-utility episodes which can be extracted
depends upon the value of the chosen utility threshold and
the characteristics of the database. It is possible to ex-
tract many episodes at lower threshold values and very few
episodes at higher threshold values. The user must ana-
lyze the distribution of items, utility value and density of
the database in order to choose an appropriate utility value.
In summary, a user’s engagement while mining high-utility
episodes is not a desirable solution.

In this paper, we propose a solution for mining top-k high-
utility episodes from a complex event sequence. Our aim is



to relieve a user from the task of analyzing the database
and choosing a utility threshold, which is often a difficult
task for any user. The parameter k is the number of high-
utility episodes to be extracted from the database. A naive
approach for extracting top-k high-utility episodes can be
to set the minimum utility threshold to zero and apply any
high-utility episode mining algorithm to find the complete
set of high-utility episodes. Top-k episodes can be then cho-
sen from the result set. However, this approach is computa-
tionally very inefficient as the search space is exponential in
the number of different items. In order to improve the effi-
ciency, we propose effective strategies to raise the minimum
utility threshold from zero as quickly as possible.

Our research contributions can be summarized as follows:

• We propose an algorithm to mine top-k high-utility
episodes from a complex event sequence.

• We develop effective strategies to raise the minimum
utility threshold quickly during the mining process in
order to reduce the search space effectively.

• We conduct extensive experiments on real as well as
synthetic datasets and the experiment results demon-
strate the effectiveness of our approach.

The paper is organized as follows. Section 2 reviews the
related work and background knowledge is explained in Sec-
tion 3. We propose our algorithm and our strategies for
improving the performance in Section 4. The experimental
results are presented in Section 5 and Section 6 concludes
the paper.

2. RELATED WORK
In this section, we briefly discuss some related work done

in this field. We divide the work into two lines of research:

2.1 Frequent Episode Mining
Frequent Episode Mining (FEM) was first introduced by

Mannila et al. [24]. Two algorithms WINEPI and MINEPI
were proposed in this paper. In WINEPI, the events were
sampled regularly over a sequence of events. An episode was
considered interesting if it fits into a window width which is
defined by the user. The support was computed by counting
the number of sliding windows in which episode appeared.
However, the algorithm could not avoid the double counting
of occurrence of an episode. In order to resolve the issue, the
concept of minimal occurrence was introduced. The minimal
occurrence of an episode α is a time interval [ts, te] where
the episode α occurs and it does not occur in any proper
subinterval of [ts, te]. In order to find the support, the
algorithm counted the number of minimal occurrences of an
episode.

However, the algorithms generate a large of candidate
episodes. Several methods have been proposed to improve
the performance of existing FEM algorithms. However, a
majority of the studies are devoted towards mining frequent
episodes in simple event sequences [1, 2, 4, 6, 15]. Mining
frequent episodes from a complex event sequence were only
considered by Huang et al. [17].

2.2 Utility Episode Mining
The FEM framework assumes that all the events are of

same importance. Therefore, it may report many episodes

of low revenue and miss high revenue but low-frequency
episodes. For solving this issue, the concept of utility was in-
troduced in episode mining by Guo et al. [13]. However, this
paper only considered the external utility of an episode and
mining was performed in a simple event sequence. Wu et
al. [32] addressed this problem and proposed an algorithm
UP-Span to discover high utility episodes in the complex
event sequence. The events were associated with internal
utility (quantity) and external utility (profit). The authors
also proposed two strategies, namely Discarding Global un-
promising Events (DGE) and Discarding Local unpromising
Events (DLE), to discard unpromising events and reduce the
search space. To speed up the UP-Span algorithm, Guo et
al. [12] presented a prefix tree structure and tighter upper
bounds for candidate episodes utility.

From the above-related work, we can conclude that only
preliminary work is done in mining high utility episodes.
Many algorithms have been proposed for top-k high-utility
pattern mining from transaction [33, 29] and sequential
databases [35]. However, the existing top-k utility mining
algorithms cannot be directly applied to top-k high utility
episode mining on a very large complex event sequence. If
we try to transform a complex event sequence into a set
of transactions or a set of sequences to make a sequential
database, it is not straightforward. Further, this makes the
existing algorithms inefficient for top-k utility episode min-
ing from a complex event sequence.

3. BACKGROUND
In this section, we present some definitions given in the

earlier works [32] and describe the problem statement for-
mally.

3.1 Episode Mining
Definition 1. (Event) An event is defined by the pair (e, t)
where e is the event type and t ∈ N+ is the time at which
event occurs.

Definition 2. (Complex event sequence) A complex event
sequence CES = <(SE1, t1), (SE2, t2), . . . , (SEn, tn)> is an
ordered sequence of simultaneous event sets, where each si-
multaneous event set is associated with a time point t ∈ N+

and ti<tj, for all 1 ≤ i<j ≤ n.

Let us consider the complex event sequence as shown in
Figure 1. (〈(D)〉, 5) is an event which occurs at t5.

Figure 1: A Complex Event
Sequence

A B C D E F G

1 4 2 1 5 3 2

Table 1: External Utility

Definition 3. (Simultaneous event set) A simultaneous
event set is composed of a set of events, where each event
occurs at the same time point t.

For example, (〈(DA)〉, 5) is a simultaneous event set which
occurs at t5.



Definition 4. (Episode containing simultaneous event
sets) An episode
α= <(SE1), (SE2), . . . , (SEn)> is a non-empty totally or-
dered set of simultaneous events, where SEi appears before
SEj for all 1 ≤ i<j ≤ n.

For example, 〈(EC), (D)〉 is an episode.

Definition 5. (Occurrence) For an episode
α= <(SE1, t1), (SE2, t2) ,. . . , (SEn, tn) >, the time inter-
val [Ts, Te] is called the occurrence of episode if α occurs
in [Ts, Te] and the first simultaneous event SE1 of α occurs
at time Ts, while the last simultaneous event set SEk of α
occurs at time Te.

For example, the occurrence set of episode 〈(E), (D)〉 is
occ(〈(E), (D)〉) = [1, 3], [3, 3], [1, 5], [3, 5].

Definition 6. (Minimal Occurrence) The occurrence time
interval [Ts, Te] of an episode is called a minimal occurrence
if there exists no sub-interval of [Ts, Te] in occurrence of α.
Consider two time intervals [Ts, Te] and [Ts

′ , Te
′] , [Ts

′ , Te
′]is the sub-interval of [Ts, Te] if Ts ≤ Ts

′ and Te
′

≤ Te.

For example, the minimal occurrence set of episode 〈(E), (D)〉
is
minOcc(〈(E), (D)〉) = [1, 3], [3, 3], [3, 5].

Definition 7. (Support of an episode) The support of
an episode is defined as the number of minimal occurrences
of an episode.

For example, the support of episode 〈(E), (D)〉 is 3.

Definition 8. (Internal and External Utility) In min-
ing high utility episodes, each event ei is associated with a
positive number p(ei), called as the external utility. Each
event ei in a simultaneous event set SEj at the time point
tj is associated with a positive number q(ei, tj), called as
internal utility.

For example, the external utility of events is shown in
Table 1.

Definition 9. (Utility of an event at a time point)
The utility of an event ei at a time point tj is u(ei, tj) =
p(ei, CES)× q(ei, tj).

For example, the utility of event 〈(F )〉 at time t6 is 1× 3
= 3.

Definition 10. (Utility of a simultaneous event set
at a time point) The utility of a simultaneous event set
SE = 〈(e1, t1), (e2, t2), (e3, t3), . . . , (ek, tk)〉 at a time point
ti is defined as u(SE, ti) = Σk

i=1u(ei, ti).

For example, utility of simultaneous event 〈(GF )〉 = (2×
1) + (3× 1) = 5.

Definition 11. (Utility value of an episode w.r.t. its
minimal occurrence) Let mo(α) = [Ts, Te] be a minimal
occurrence of the episode
α = 〈(SE1), (SE2), . . . , (SEn)〉, where each simultaneous
event set SEi ∈ α is associated with a time point Ti. The
utility of the episode α w.r.t mo(α) is defined as
u(α,mo(α)) = Σk

i=1u(SEj , ti).

Definition 12. (Utility of an episode in a complex
event sequence) Let moSet(α) = [TI1, T I2, . . . , T Ik] be the
set of all minimal occurrences of the episode α, where TIi is
a minimal occurrence of α for 1 ≤ i ≤ k. The utility value
of the episode α in a complex event sequence CS is defined
as uv(α,CS) = Σk

i=1u(α, TIk).

For example, u(〈(E), (D)〉, [1, 3]) = 10 + 3 = 13, and
u(〈(E),
(D)〉, CES) = u(〈(E), (D)〉, [1, 3]) + u(〈(E),
(D)〉, [3, 3]) +u(〈(E), (D)〉, [3, 5]) = 13 + 13 + 11 = 37.

Definition 13. (High Utility Episode(HUE)) If the util-
ity of an episode is not less than the minimum utility thresh-
old, then it is called as a high utility episode.

Definition 14. (Maximum Time Duration) Maximum
Time Duration (abbreviated as MTD) is a user specified win-
dow. A minimal occurrence mo(α) = [Ts, Te] satisfies the
maximum time duration constraint iff, (Te−Ts+1) ≤MTD.

Definition 15. (Simultaneous and Serial concatena-
tions) Let
α = 〈(SE1), (SE2), . . . , (SEx)〉 and
β = 〈(SE′1), (SE′2), . . . , (SE′y)〉 be episodes. The simultane-
ous concatenation of α and β is defined as:
simulconcat(α, β) = 〈(SE1), (SE2), . . . , (SEx

⋃
SE′1), (SE′2),-

. . . , (SE′y)〉.
The serial concatenation of α and β is defined as:
serialconcat(α, β) = 〈(SE1), (SE2) , . . . , (SEx), (SE′1),
(SE′2), . . . , (SE′y)〉.

For example, Let α = (〈(B)〉, [4, 4]) and β = (〈(D)〉, [5, 5]).
The new episode formed by serial concatenation of α and β
is γ = 〈(B), (D)〉, [4, 5]. Let now α = (〈(A)〉, [5, 5]). The
simultaneous concatenation of γ and α is 〈(B), (DA)〉, [4, 5].

Since downward closure property doesn’t hold in utility min-
ing, the authors [32] proposed the concept of Episode-weighted
Utilization (EWU). The EWU satisfies the downward clo-
sure property i.e. if the EWU of an episode is less than the
minimum utility threshold, all its super episodes will have
low utility.

Definition 16. (Episode-Weighted Utilization of an
episode w.r.t a minimal occurrence) Let moj(α) = [Ts, Te]
be a minimal occurrence of the episode
α = 〈(SE1), (SE2), . . . , (SEx)〉, where each simultaneous
event set SEi ∈ α is associated with a time point Ti(1 ≤ i ≤
k) and moj(α) satisfies MTD. The episode-weighted uti-
lization of α w.r.t mo(α) is defined as EWU(α,moj(α)) =
Σk−1

i=1 u(SEi, ti) + Σs+MTD−1
i=e u(tSEi, ti) where tSEi is the

simultaneous event set occurring at time point Ti in CES.

Definition 17. (Episode-Weighted Utilization of an
episode) Let moSet(α)
= [TI1, T I2, . . . , T Ik] be a set of minimal occurrences of the
episode α = 〈(SE1), (SE2), . . . ,
(SEx)〉, where each simultaneous event set SEi ∈ α is as-
sociated with a time point Ti(1 ≤ i ≤ k) and moj(α) satis-
fies MTD. The episode weighted utilization of α in complex
event sequence CES is defined as EWU(α) = Σk

i=1u(α, TIi).

For example, let the MTD set by the user be 3.The EWU
of 〈(E), (D)〉 w.r.t a minimal occurrence is
EWU(〈(E), (D)〉, [1, 3]) = 10 + 13 = 23.



The EWU of 〈(E), (D)〉 in the CES is EWU(〈(E), (D)〉) =
[EWU(〈(E), (D)〉), [1, 3]]+[EWU(〈(E), (D)〉), [3, 5]] = 23+
13 = 36.

Definition 18. (High Weighted Utilization Episode
(HWUE)) An episode is called High Weighted Utilization
Episode its EWU is no less than the minimum utility thresh-
old min utility.

4. EFFICIENT MINING OF TOP-K HIGH
UTILITY EPISODES

In this section, we present our proposed algorithm, TUP-
Basic (Top-k Utility episode mining), for mining top-k high
utility episode mining in a complex event sequence. First,
we propose a basic algorithm to find the top-k high utility
episodes. Then, we propose some strategies to effectively
raise the minimum utility threshold during the mining pro-
cess.

4.1 TUP-Basic
In this subsection, we present a basic algorithm for dis-

covering top-k high-utility episodes from a complex event
sequence (See Algorithm 1). The algorithm takes as input
a complex event sequence and a parameter k. The algo-
rithm maintains a sorted list of size K dynamically, which
contains the top-k high-utility episodes. The minimum util-
ity threshold (min utility) stores the utility of the current
kth episode. The minimum utility threshold is initialized to
zero before the start of mining process as the top-k buffer is
empty.

First, the database is scanned once to find all 1-length
episodes (Line 1). The minimal occurrence, utility and EWU
of 1-length episodes are calculated. If the EWU of an episode
is greater than the minimum threshold (Line 4), the algo-
rithm explores the search space of high utility episodes with
the current episode as the prefix. The algorithm follows a
depth-first search strategy for finding new episodes.

To explore the search space, an episode is concatenated
simultaneously (Line 5) and serially (Line 7) to events. Let
the occurrence of an episode α be [Ts, Te]. The events occur-
ring at Te are simultaneously concatenated to the episode α.
While the events occurring between Te +1 to Ts +MTD−1
are serially concatenated to episode α according to the def-
inition 15.

Each new episode, β, formed by concatenation, calls
Insert Episode(.) which updates the list of Top-k episodes
(See Algorithm 2). The input episode is added to the list if
the size of the list is less than user-defined k or its EWU is no
less than the minimum utility threshold. Once k candidates
are discovered the minimum utility is raised to kth highest
utility in the list i.e. to the least utility in the list. Further,
only episodes satisfying minimum utility is inserted in the
list and the (k+1)th episode is removed from the buffer. Af-
ter the algorithm terminates, top-K list contains the desired
output of top-k high utility episode mining in the complex
event sequence.

The algorithm returns the correct result as if the EWU
of an episode is less than the utility of the current kth
episode, it is guaranteed that no super-set of that episode
can be in the top-k buffer due to downward closure property.
The top-k episodes for k=3 and MTD=2 is: {〈(ED), (B)〉 :
29, 〈(E), (B)〉 : 26, 〈(EC), (C)〉 : 24}

Algorithm 1 TUP-Basic(CES,MTD, k)

Input: A complex event sequence CES,desired number of
episodes k
Output: The complete set of top-k high utility episodes

1: Scan CES to find all one length episodes
(oneLengthEpiSet).

2: min utility=0.
3: for episode epi in oneLengthEpiSet do
4: if EWU(epi) ≥ min utility then
5: Simultaneous Concatenation(epi,minOcc(epi),
6: min utility, k).
7: Serial Concatenation(epi,minOcc(epi)
8: ,min utility, k).
9: end if

10: end for

Algorithm 2 Insert Episode(epi,min utility, k)

Input: an episode epi,minimum utility min utility, desired
number of episodes k
Output: Top-K List: Top-k high utility episodes among
the candidates

1: if size(Top−KList)<k then
2: Add epi to Top-k List.
3: else
4: if utility(epi)>min utility then
5: Remove kth high utility episode i.e. episode
6: having least utility.
7: Add epi to the List.
8: Sort the list in decreasing order of utility values

of episodes.
9: min utility = least utility in Top-K List.

10: end if
11: end if

4.2 Pre-insertion Strategy
The TUP-Basic algorithm generates many candidates since

the minimum threshold start from zero. We try to raise the
minimum threshold before mining high-utility episodes from
a complex event sequence. The idea is to pre-insert the si-
multaneous event sets, i.e. the event sets occurring at the
same time point, in the top-K list after the initial scan of the
database. We call this strategy as the pre-insertion strategy.
We will illustrate the effectiveness of this approach with an
example.

Let us consider the example sequence as shown in Figure
1 and utility of events as per Table 1. Let the value of k be 3.
First, the event set, 〈(EC)〉 : 14, occurring at time point 1 is
inserted. Similarly, the utilities of other simultaneous event
sets are calculated and the event sets are inserted in the
top-k list.After the simultaneous event sets are inserted, the
top-k list is {〈(B)〉 : 16, 〈(EC)〉 : 14, 〈(ED)〉 : 13}. As seen
from the example, the pre-insertion strategy increases the
minimum utility threshold from zero to 13 before starting
the mining process.

4.3 EWU Strategy
The EWU associated with every episode captures the fre-

quency as well as utility aspects nicely. The probability of an
episode to be of high-utility increases with its EWU value.
The idea is to start exploring those episodes first which have
higher EWU compared to others. We know that the min-



imum utility threshold in high-utility mining remains fixed
and the order in which paths are explored does not affect
the efficiency. But, in Top-k the order of path taken does
matter because the minimum utility threshold is dependent
on the candidates list. So in this strategy, we process those
episodes first which have a higher EWU compared to other
episodes. we sort the episodes w.r.t their EWU’s before
concatenating them serially or simultaneously with other
episodes. Our hypothesis is that the EWU strategy will
work better on dense datasets compared to sparse datasets
as dense datasets generate a lot of high EWU episodes.

We illustrate the working of EWU strategy with an ex-
ample. The EWU of single episodes is shown in Table 2.
Since episode (E) has the highest EWU, it is processed first.
Let the value of MTD and k be 2 and 3 respectively. The

E C D B A G F

53 47 37 19 8 5 5

Table 2: EWU of single episodes

simultaneous episode 〈(EC)〉 : 14 is generated and inserted
into the top-k buffer. Since no events can be simultaneously
concatenated with 〈(EC)〉, the method for serial concate-
nation is called. The serial episode 〈(EC), (C)〉 : 24 with
utility 24 is generated and added to the top-k buffer. Since,
no episodes can be serially or simultaneously concatenated
with 〈(EC), (C)〉, the execution returns to episode 〈(E)〉
and the simultaneous episode 〈(ED)〉 : 13 is generated and
added to the buffer. The minimum utility threshold is set
to 13. If we randomly select a path or use lexicographi-
cal order the minimum utility threshold may not increase
so fast. For example, if we first process the episodes of
path starting with episode (A) then the minimum thresh-
old raises to value 3 as the Top-k list consists of episodes
{〈(AD)〉 : 3, 〈(A,G)〉 : 4, 〈(A,F )〉 : 5} after traversing this
path. So, the strategy 2 helps in raising the minimum
threshold efficiently and hence it prunes the search space
faster.

5. EXPERIMENTS AND RESULTS
In this section, we evaluate the effectiveness of our pro-

posed strategies. We also study the performance of com-
bining pre-insertion and EWU strategies, which we refer as
TUP-Combined. We conduct experiments on various real
and synthetic datasets. The description of the real datasets
is shown in Table 3. A transaction database can be consid-
ered as a complex event sequence by considering each item
as an event and the items in a transaction as a simultaneous
event. We implemented all the algorithms in Java with JDK
1.7 on a Windows 8 platform.

Table 3: Characteristics of RealDatasets

Dataset #T x Avg. length #Items Type
ChainStore Small 10,000 7.2 46086 Sparse
Retail Small 10,000 5.2 16470 Sparse
Accidents Small 10,000 10 468 Dense
Mushroom 8,124 10 119 Dense
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Figure 2: Performance Evaluation on Sparse Datasets
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Figure 3: Performance Evaluation on Dense Datasets
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Figure 4: Memory Consumption on Real Datasets



The experiments were performed on an Intel Xeon(R)
CPU=26500@2.00 GHz with 64 GB RAM. All real datasets
except ChainStore were obtained from FIMI Repository [9].
The ChainStore dataset was obtained from Nu-MineBench
2.0 repository [28]. The quantity information for items was
chosen randomly from 1 to 5. The external utility values
were generated between 1 to 1000 using log-normal distri-
bution.

We compared the performance of the algorithms on the
basis of total execution time as well as the number of can-
didates. For datasets except Mushroom, we only take the
first 10,000 transactions as it takes a lot of time to run ex-
periments on a bigger sequence. Only ChainStore dataset
has utility values associated with each item in the database.
For other datasets, the utility values are generated between
1 to 5 using log-normal distribution. The quantity values are
generated randomly between 1 to 5. We fix the maximum
time duration(MTD) parameter to 2 for our experiments.

The results on sparse datasets are shown in Figure 2.
The graphs show that pre-insertion strategy beats the other
strategies in terms of total execution time and number of
candidate episodes generated. The EWU strategy performs
the worst as sparse datasets usually generate few short high-
utility episodes.

The results on dense datasets are shown in Figure 3. The
result shows that the performance of TUP-EWU and TUP-
Combined strategy outperforms the performance of other
strategies. Processing those episodes first which have higher
EWU is effective in dense datasets as the high-utility episodes
usually have high support value and are of longer length
compared to sparse datasets.

We further analyzed the memory consumption of the al-
gorithms. The results are shown in Figure 4. The results
show that TUP−EWU and TUP−Combined consume less
memory on dense datasets as they generate less number of
candidate episodes.

6. CONCLUSION
High-utility Episode mining in a complex event sequence

is an emerging topic in data mining and has many appli-
cations in real world. In this paper, we propose an efficient
algorithm for mining top-k high utility episodes in a complex
event sequence. We further proposed effective strategies to
prune the search space effectively by raising the minimum
utility threshold. We conducted extensive experiments on
various datasets and the results demonstrate the effective-
ness of our proposed strategies.
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