
Coupling Multi-Criteria Decision Making and Ontologies for
Recommending DBMS

Lahcène Brahimi
LIAS/ISAE-ENSMA,
Futuroscope, France

lahcene.brahimi@ensma.fr

Ladjel Bellatreche
LIAS/ISAE-ENSMA,
Futuroscope, France

bellatreche@ensma.fr

Yassine Ouhammou
LIAS/ISAE-ENSMA,
Futuroscope, France

yassine.ouhammou@ensma.fr

ABSTRACT
In the last decade, DBMSs have gained a great importance in re-
search and industry. Nowadays, we are getting more than 318
DBMSs in the market, where each one has its own features and fits
some specific requirements in terms of storage, management and
query processing. This situation contributes in complicating the
choice of a company to deploy a new database applications and/or
migrating it from one DBMS to another. Certainly, database ex-
perts have all competencies to choose their appropriate DBMS, but
their diversity may complicate this choice. The main goal is to pro-
vide a recommender system assisting experts and companies to per-
form the selection of their DBMS based on the features of DBMSs.
To the best of our knowledge, there is no tool that assists compa-
nies to make a good choice when selecting a DBMS that fitful their
requirements and constraints. To satisfy this objective, understand-
ing the whole architecture of any DBMS (its parameters) is neces-
sary. In this paper, we propose firstly, a domain ontology describing
common and uncommon features of DBMSs that help us in under-
standing the sense of each parameter of any DBMS. Secondly, we
present an adaptation of the multi-criteria decision making tech-
nique exploiting this ontology to assist and advise companies to
choose their appropriate DBMS. Finally, we give a case study to
illustrate our proposal and the utility of our ontology.

1. INTRODUCTION
Certainly, relational database technology has its success story

for several decades, where all companies used relational DBMSs
to store and manage their data. But, with the explosion of the
NoSQL technology, this technology got its reign threatened. As
a consequence, the major DBMS editors and start up companies
have made great efforts to improve their DBMSs, by integrating
new features, or launching new DBMSs to satisfy the new needs of
companies (such as data analytics). DB-Engine site1 has identified
more than 318 DBMSs, where each one has its own specificities
and utility. Furthermore, various DBMSs categories have been pro-
posed to meet many specific needs.

1http://db-engines.com/en/ranking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice, and the full citation on the first page. To copy otherwise,
or to republish the work, requires prior permission from CSI SIGDATA or
from the authors.
International Conference on Management of Data (COMAD), 2017
Copyright 2017 Computer Society of India (CSI) SIGDATA.

For example, the event stores DBMSs category considers data as
series of immutable events and they keep all state changing events
for an object together with a timestamp. Also, time series DBMS
category has been constructed to deal with time series data. More-
over, search engines DBMSs category has designed for data content
search (Figure 1).

Figure 1: Number of systems per category

Figure 1 and 2 give an overview of the number of systems per
category in addition to the DBMSs ranking over the last three months
according to DB-Engine.
Given this wealth, it is often difficult for a company to choose the
appropriate DBMS that fits its requirements. These requirements
are mostly related to the type and size of data owned by the com-
pany and also related to the kind of queries. It should be noticed
that data are becoming more and more complex. They include mul-
timedia data, graphics, and photographs [11]. Moreover, the num-
ber of users who can simultaneously access to the data, upload and
share files, photos and videos is exponentially growing. The ex-
pected performance is about the response time, energy, resource
consumption and availability of data processing functions. The
scalability in addition to the cost of acquisition, training and main-
tenance are also to be taken into account. All the above aspects rep-
resent constraints that impact the DBMS selection process. Thus,
they should be addressed when making a decision about a DBMS
selection. Indeed, in [1], the authors pointed out that the decision
of choosing a relevant DBMS is hard because it requires several
DBMS parameters and constraints to be satisfied. Due to these
constraints and DBMSs diversity, the process of selecting DBMSs
that meet specific requirements is a challenging issue. Note that
each constraint has an impact on the overall choice.



Figure 2: Ranking of database management systems: 10 most popular DBMSs

By examining the features of DBMSs, we can understand the
difficulty of finding a system that simultaneously satisfies all con-
straints expressed by the user. This could be achieved by design-
ing a common environment that represents a pivotal concept of the
DBMSs. To do so, the best way is to develop a domain ontology
describing all the features of DBMSs.

Note that ontologies have been widely developed in engineering
domain [2]. Contrary to conceptual models, an ontology aims at
describing in a consensual way the whole knowledge of a domain.
This description is agreed and shared by domain experts allowing
them to understand each other [2]. The presence of a such ontology
allows us instantiating any DBMS, by considering only its applica-
ble (rigid) properties [2]. Thus, ontologies have largely contributed
in defining recommender systems [16].

So, to remedy these lacks and facilitate the selection task, it is es-
sential to find a methodology that helps the user to choose the most
appropriate system(s). More precisely, the goal consists to provide
for companies recommendations ensuring the best compromise by
respecting the majority of constraints.

Our main contributions are summarized in the following points:

1. We design domain ontology to describe in details and in ex-
plicit manner any DBMS system. This is possible thanks to
the large usage experience and maturity of ontology.

2. We propose an adaptation of the multi-Criteria decision mak-
ing (MCDM) techniques through the weighted sum method
on DBMS selection.

The layout of this paper is structured as follows: we present in
Section 2 a detailed related work. Basic definitions and concepts
related to our studied problem are provided in Section 3. We de-
tail in Section 4 a motivating example to understand the problem
posed. A definition of a new model inspired by previous research
and based on domain ontology are explained in Section 5. Section
6 proposes our adaptation of the weighted sum method on DBMS
selection. Section 7 discusses in a case study example the first ben-
efits of our proposal. Finally, Section 8 concludes the paper with
some directions to future work.

2. RELATED WORK
The problem of DBMS selection got less attention compared to

other traditional problems in the database field. This problem has
been implicitly treated, because, previously, companies are refer-
ring to the experts opinion of the domain of databases. In the liter-
ature, four existing closer approaches may deal indirectly with our
problem: (i) DBMS classification, (ii) DBMS benchmarking, (iii)
DBMS conceptual modeling, and (iv) DBMS recommending based
on conceptual modeling. DBMSs classification usually follows
the evolution of DBMSs technology (Relational, Object Oriented,
XML DBMS, Multidimensional, Graph Databases, NoSQL). Each
database generation has its own DBMS [9]. A fine grained classifi-
cation may exist based on some features, which can be supported or
not by DBMSs such as ACID properties (Atomicity, Consistency,
Isolation, Durability), which are supported by relational DBMSs
[13]. The BASE properties (Basically Available, Soft state, Even-
tual consistency), which are supported by NoSQL systems such
CouchDB and Cassandra [7]. Unlike to the relational, NoSQL
supports horizontal scaling while providing flexibility in the data
model. From then on, NoSQL appears as a solution to the com-
pany wishing to manage high loads and volumes. The difficulty
in managing the low data consistency for developers has led the
great tenors of the web to develop NewSQL. This new RDBMS al-
lows horizontal scalability, schema flexibility and strong data con-
sistency through ACID transactions (Figure 3).

The 451 research group2 developed a data platforms landscape
map with a very large volume of features. This work allows us
to extract several DBMSs classification. We can cite the classi-
fication by families, relational DBMSs, NoSQL systems and its
four classes (Key-value oriented, document oriented, column ori-
ented, graph oriented), and NewSQL systems and its three classes
(MySQL ecosystem, advanced clustering/sharding, NewSQL
databases). Thus, we can deduce a classification based on the type
of use of the DBMSs, the DBMSs intended for: general purpose,
analytic, as-a-service (e.g. cloud) and big data.

2https://451research.com/



Figure 3: Relational, NoSQL and NewSQL DBMSs

Benchmarking can be another alternative to recommend a DBMS.
This can be done by empirical testing of the most popular DBMS
based on the company’s requirements. The TPC(Transaction Pro-
cessing Performance Council)3 spends a lot of efforts in testing the
most important DBMS belonging to various generations of databases
(TPC-C for Online Transaction Processing, TPC-H for Decision
Support applications, Transaction Processing - OLTP, TPC-VMS
for Virtualization and TPCx-HS for Big Data). However, bench-
marking costs in terms of time and budget and requires a prelimi-
nary stage of functional choice. Another limitation of this alterna-
tive is that it is based on popularity of DBMS instead of consider-
ing the relevance and the completeness dimensions. Unfortunately,
several DBMSs are rich in terms of supported features but are ig-
nored because they are not well known.

DBMS conceptual modeling is another opportunity to deal with
our problem. This issue has been motivated by the slogan ”one
size fits all” [20]. Several studies incorporate the variability in
DBMS design. They borrowed expertise from Software Product
Line (SPL) community. This allows to design specialized systems
by varying some parameters of the original DBMSs to respect new
requirements such as energy. To do so, efforts have been elaborated
to conceptual model DBMS features. In [20], the authors presented
a work on the FAME-DBMS research project 4. The objective is to
develop, extend and evaluate techniques and tools to implement
and customize DBMSs. These techniques must take into account
the particular requirements of embedded systems. For this, they
used the software product line (SPL) approach based on the static
composition of features.
The complexity and the less predictable of the existing database
management systems (ie, performance consistency with increased
functionality and data growth is not certain), leading researchers
and engineers of databases to review DBMS architectures to meet
the needs of new hardware and application trends.
To this end, the authors of [22] proposed a biological-based DBMS
called cellular DBMS. This architecture was inspired by the FAME-
DBMS project allowing the development of highly customizable
and autonomous DBMS. The main limitation of these efforts is that
they consider only some concepts and properties (parameters) from
the most popular DBMS and ignore other relevant DBMS [12].

3www.tpc.org
4https://www4.cs.fau.de/Research/FAME-DBMS/

Recently, some research efforts have been conducted to propose
recommender systems based on DBMS conceptual model. In [5],
the authors have proposed a recommender DBMS system to satisfy
non-functional requirements such as performance expressed by a
manifest using machine learning techniques. This can be done by
the construction of a repository schema storing all experiment tests
that are available in Web sites such as TPC. This approach shares
the limitation of modeling approaches.

3. DECISION MAKING PROCESS
In this section first, we present multi-criteria decision making

(MCDM) techniques. Then we will focus on the best MCDM meth-
ods: the weighted sum model that will be used in our proposal.

3.1 Multi-criteria decision making (MCDM)
Multi-criteria decision making (MCDM) has grown as a part of

operations research, concerned with designing computational and
mathematical tools for supporting the subjective evaluation of a set
of alternatives in terms of a set of multiple, usually conflicting, de-
cision criteria. MCDM problems are common in everyday life. In
personal context, a house or a car one buys may be characterized in
terms of price, size, style, safety, comfort, etc. In business context,
MCDM problems are more complicated and usually of large scale.
For example, many companies in Europe are conducting organi-
zational self-assessment using hundreds of criteria and sub-criteria
set in the EFQM (European Foundation for Quality Management)
business excellence model. Purchasing departments of large com-
panies often need to evaluate their suppliers using a range of criteria
in different area, such as after-sale service, quality management, fi-
nancial stability, etc. In recent years several previous studies have
employed MCDM tools and applications to solve area problems
such as energy, environment, quality management, safety and risk
management, manufacturing systems, technology and information
management, operation research and soft computing, etc. MCDM
methods have been designed to designate a preferred alternative
and classify alternatives according to a subjective preference order.
MCDM is a generic term for all methods that exist for helping peo-
ple make decisions according to their preferences [15].

3.2 Weighted sum model
The weighted sum model (WSM) is the earliest and probably the

most used [21]. It is known as the best and the simplest multi-
criteria decision making/analysis (MCDM/MCDA) [3]. It com-
bines the different objectives and weights corresponding to those
objectives to create a single score for each alternative to make them
comparable. So, the best alternative is chosen as the one which has
the maximum WSM score. The different objectives are assumed to
be positive [14]. Given a set of m alternatives denoted A1,A2, ..,Am
and a set of n decision criteria denoted C1,C2, ..,Cn. Furthermore,
let assume that all the criteria are benefit criteria, and w j denotes
the relative weight of importance of the criterion C j and ai j is the
performance value of the i− th alternative when it is evaluated in
terms of the j− th criterion. Then, the total importance of the i− th
alternative, denoted as AWSM−score

i , is defined as follows [21]:

AWSM−score
i =

n

∑
j=1

w jai j, f or i = 1,2,3, ...m. (1)

Consequently, the best alternative is the one that satisfies (in the
maximization case) the following expression:

AWSM−score
∗ = max

i

n

∑
j=1

w jai j, f or i = 1,2,3, ...m. (2)



4. MOTIVATING EXAMPLE
In this section, we illustrate some examples for the sake of un-

derstanding the difficulty of the discussed choice and for explaining
the interest in a first phase to construct a DBMS model and its in-
stances.
Let consider table 1 containing some examples of widely used
DBMSs. Here, three are relational DBMSs, namely Oracle5, Post-
greSQL 6 and MySQL7. Two are NoSQL DBMSs, namely, Mon-
goDB 8 a document oriented system and Cassandra9 a column ori-
ented system. In our example, six features are presented: storage
model, availability of operating systems, programming language
supported, query language, structuring of data and supported ac-
cess methods.

Now, let us assume that a company/user is looking for a DBMS
that meets the following requirements:
(i) the stored data are not structured and
(ii) SQL is the query language mastered by users.
By examining the entries of Table 1, we can figure out that no sys-
tem satisfies simultaneously these two constraints. Since the re-
quirements are contradictory referring to the available six features
(parameters). Indeed, the choice can be made based on the query
language and we choose from: Oracle, MySQL or PostgreSQL, ei-
ther based on the nature of data and we select from: MongoDB and
Cassandra. Therefore, with the proposed systems, it was impossi-
ble to arrive at a solution satisfying both constraints simultaneously,
because several aspects are missing, such as:

• A comprehensive model initially representing a functional
environment;

• All instances of DBMSs;

• The relationships between features (equivalence, autonomy,...).

5. NEW DATABASE SYSTEMS MODEL
Generally, computer products have multiple functions, particu-

larly in storage, management and processing solutions. The first
scan of systems functionalities shows that we can categorize them
into three groups:

• Common to all products: price, popularity, feedback, docu-
mentation, website.

• Common to all software products: License (proprietary or
open source), server operating systems (Windows, Linux,
Unix), etc.

• Common and specific to DBMSs: database model (relational,
object oriented, key-value oriented, document oriented, col-
umn oriented, graph oriented, etc.), architect (centralized,
cloud, etc.), supported programming languages (Java, C, C++,
etc.), query language (SQL, XQuery, SPARQL, etc.) [17],
data manipulation techniques and access methods.

Despite the new technologies of databases, practically each system
consists of two main parts: the first part is linked to the system
environment and the second part is linked to the database.
5http://docs.oracle.com/
6http://www.postgresql.org/
7https://www.mysql.fr/
8http://www.mongodb.org/
9http://cassandra.apache.org/

Usually the first part consists of four components: the machine,
the operating system, the DBMS and the performance provided
by these three elements taking into account the characteristics of
the database. According to this principle, our proposal consists to
develop a common model for database systems (DBS), which is
composed of four concepts (Figure 4): DBMS, Operating System,
Hardware and Performance and each being composed of other ele-
ments.

• The availability of operating systems with the inherent char-
acteristics is a very important factor for users to ensure an
easy integration of new DBMS with the overall corporate in-
formation system. It has a strong interaction with the hard-
ware;

• The hardware represents the device characteristics, the fre-
quency and the RAM size. The clock speed and the number
CPU cores, in addition to the capacity and speed of the hard
disk, are important characteristics;

• DBMS represents the core of the DBS and ensures interac-
tion between the user and the database to capture and ana-
lyze the data. It is the main actor in performance database
systems;

• The last component is the performance expressed as the us-
ability, the quality, the security, the performance, the normal-
ization, the integrity, etc. The percentage of resource con-
sumption such as RAM, CPU and hard disk and the evalua-
tion results obtained computing response time, energy con-
sumption, etc. using multiple benchmarks as YCSB, TPC
and others [9] [10] are very important constraints that play a
pivotal role in the evaluation and validation of the database
systems.

The goal of modeling database systems is to understand its struc-
ture, functioning and presenting in a form of concepts, attributes
and instances related to the domain. First, it ensures the interaction
between components. Then, it can provide a well detailed func-
tional hierarchy.

Figure 4: Database systems ontology



Table 1: Example of DBMSs with six different features: Oracle, PostgreSQL, MySQL, MongoDB and Cassandra
DBMS Oracle MySQL PostgreSQL MongoDB Cassandra
Model Relational Relational Relational document column

Oriented Oriented
Operating Windows, Windows Windows Windows Windows
system Unix, Unix, Unix, Unix, Unix,

Linux Linux Linux Linux Linux
API Java, c ... Java, c ... Java, c ... Java, c ... Java, c ...
Query language SQL SQL SQL Command line CQL
Data structured Structured Structured Structured, Unstructured Unstructured

Semi structured
Access methods Index join, B-tree, Hash B-tree, Hash, Single and compound Single index

B-tree GIST, GIT field index

5.1 Database management system class
A few years ago, there were a dozen Database Management Sys-

tems (DBMSs) that companies and educational organizations shared
to develop database applications. Today we are witnessing a prolif-
eration of new DBMSs developed to meet the new needs motivated
by the era of web and Big Data (Figure 5).

Figure 5: DBMSs development over the years

Many DBMSs are available on the market, from open source
DBMSs to commercial DBMSs, from DBMSs specially aimed at
professionals to DBMS for beginners and from specific DBMSs
such as search engines and data indexing (e.g., Elasticsearch and
others) to DBMSs for general use (e.g. Oracle and others). The
common point is that all systems have more functionality but more
expensive. This situation sometimes returns at cost price of com-
mercial systems and sometimes returns at the cost of processing,
storage, maintenance, training , Etc., particularly for open source
systems. For that, we focus on the DBMS component and its fea-
tures. As said previously, unavailability of a classification for DBMS
models and the associated features was the motivation for taking
a step towards the development of a DBMS model by studying
and analyzing their features and functioning, in particular concern-
ing data access, manipulation and processing, and data distribu-
tion and storage model (Figure 6). The integration of system fea-
tures in the same model facilitates the search of a targeted system.
Our DBMS model, mainly based on previous research on DBMSs
(FAME-DBMS) in [20] and Cellular DBMS in [22], especially in
the decomposition and modeling features. We also benefit from the
ontology domain through its ease of representation and reasoning.

Figure 6: Database Systems ontology: DBMS class

The purpose of making a special model for all DBMSs is to try
to develop a common model containing all the features (common
or uncommon) distributed in categories according to their role in
data management.

The DBMS component is considered as the core of a database
system (DBS). We split it in two parts (Figure 6):

• The first is related to the data access techniques describ-
ing the various optimization structures, indexes, materialized
views, vertical/horizontal fragmentation, etc. and the data
manipulation methods, query language, aggregation, etc.

• The second part is linked to the software technology that de-
scribes data sharing, cloud, replication and other techniques.



5.2 Data Access class
Given the multiplicity and the difficulty to detail all the fea-

tures, the data access part (Figure 6) is highlighted for both data
manipulation and Data Access Methods. Data manipulation (Fig-
ure 7) represents the functionality of query languages supported
by the DBMSs for creating and manipulating databases. Select-
From-Where (or equivalent in other languages) grouping, transac-
tion and aggregation (sum, count, avg, min, max) represent ordi-
nary needs of queries. Stored procedures, triggers, spatial, tempo-
ral and stream processing represent specific needs of queries [19].

In the other side, there are wide optimization structures sup-
ported by DBMSs that can enhance the query performance. Select-
ing the appropriate optimization structures for a given workload
is NP-hard problem [4]. Several algorithms and approaches have
been proposed to deal with this problem. They may be divided into
two classes [4] based on their used resources:

• The first class concerns the redundant optimization structures
that include vertical fragmentation, materialized views, in-
dexes and management of buffer. These structures require
additional storage cost to implement the structures on exist-
ing data. In addition, updating the data (insertion, deletion
or modification) affects these structures and requires an ad-
ditional maintenance cost.

• The second class concerns the non-redundant structures (e.g.
horizontal fragmentation, parallel processing and scheduling
queries, etc.). Unlike redundant structures, they do not re-
quire any additional storage costs because they relate to the
distribution of data or queries.

5.3 Software class
The software component (Figure 8) represents the storage model

(relational, Key-value store, document oriented, column oriented,
graph oriented, etc.), the data storage (file system, in memory, etc.),
the supported operating systems (windows, Unix, Linux), the archi-
tecture (Centralized, distributed, cloud, etc.).

6. A RECOMMENDER SYSTEM FOR SE-
LECTING DBMS

To respond to the question asked previously in the introduction,
we believe that recommender systems may assist companies in se-
lecting their favorite DBMS. Recommender systems are software
tools and techniques providing suggestions for items to be of use
to a user. The suggestions relate to various decision-making pro-
cesses, such as what DBMS to choose [18]. They have become
fundamental applications and have been largely used in several do-
mains, in electronic commerce, information access, media and en-
tertainment industry providing suggestions that effectively prune
large information spaces so that users are directed toward those
items that best meet their requirements and preferences. A vari-
ety of techniques have been proposed for performing recommenda-
tion, including collaborative recommender system, content-based
recommender system, demographic based recommender system,
utility based recommender system, knowledge based recommender
system These methods have sometimes been combined in hybrid
recommender systems [8]. They differ from the information that
they use to propose recommendations. The collaborative filtering
uses similarities between users and items. Content-based uses static
information about users or items. However, knowledge-based de-
pends on information that are obtained directly from users.

Figure 8: DBMS class: software classes

The recommendation scenario in our context is the following:
We assume that a company/user comes up with a database appli-
cation with its characteristics related to the targeted features of
DBMSs and the company components, the database schema, the
workload, the platform, etc., and wants getting an advise to choose
a relevant DBMS that fulfills its requirements. Our recommender
system is founded on two levels (see Figure 9):

1. The first level represents the search of DBMS features us-
ing our adaptive of the weighted sum method on the DBMS
selection based on the multi-criteria decision making tech-
niques

2. The second level that we presented in [5] and [6], consists to
design a repository containing data result tests. Using ma-
chine learning techniques, we can predict other test results
without doing so. This prediction is based on the functional
and non-functional requirements (e.g. query response time)
expressed by the users.

This recommender system consists of three parts as follows:

• Users requirements called Manifest [6];

• Our adaptation of the weighted sum method on the DBMS
selection using our ontology;

• Our approach based on the machine learning techniques us-
ing the tests repository [5].

We consider that in level 1, all the DBMSs instantiated in our
ontology are under the test of our recommendation system. In Level
2, the DBMS under test are the deliverable of level 1. We can also
and depending on the importance of the user wishing to seek for
a DBMS taking into account that performance to set the level 2 as
optional level.



Figure 7: DBMS class: data access and optimization techniques



Figure 9: Recommender system levels

6.1 Expressing a Manifest
We assume that a design office of a company comes up with

constraints, and wants to get a recommendation to choose the best
DBMS that meets its requirements. These constraints are divided
into three categories:

• Desired features supported by the DBMSs;

• Functional requirements related to the database schema, data,
workload, platform, operating system, deployment architec-
ture, etc.,

• Non-functional requirements representing the performance
to be achieved.

These informations components are described through a docu-
ment called the Manifest. Two categories of information are avail-
able: (i) given information and (ii) missing information. The first
category defines the valued attributes that a company has, whereas
the second one represents the attributes with missing values that the
company is looking for.

To clarify the utility of the Manifest concept, Figure 10 repre-
sents of a Manifest, where DBMS and performance metric, that
estimate the queries response time, are missing. However, in this
paper, we focus to satisfy the first part of the manifest.

Figure 10: Example of a Manifest

6.2 Adaptation of the weighted sum method
on the DBMS selection

The main goal is to find systems that guarantee the company/user
requirements. These systems should satisfy the maximum require-
ments with respect to the importance defined by the companies/users.

Note that our problem is quite similar to the problem of multi-
criteria decision making (MCDM). It consists in evaluating a num-
ber of alternatives in terms of a number of decision criteria.

Due that we are in the context of adapting multi-criteria decision
making techniques on our problem mainly focused on a best DBMS
selection method, we decided not to make a comparison between
the MCDM techniques because our goal is to focus on DBMS and
not on techniques.

To meet this goal, our proposal focuses on the adaptation of
MCDM techniques on the DBMS selection using our ontology pre-
sented in Section 5. Our ontology represents the knowledge base of
DBMS features and the weighted sum method represents the tech-
nique for evaluating a number of DBMSs basing on a number of
decision criteria.

The idea is to build a decision matrix A from the instance of
our DBMS model, while the alternatives Ai represent DBMS, the
criteria C j (the vector criteria C) represent the features and the per-
formance value ai j receive 0 in case of the absence of this feature
for the given DBMS and 1 in the contrary case, and w j denotes the
relative weight of importance of the criterion C j.



For example, if we assume this scenario: company seeks a sys-
tem ensuring the following criteria: management of geospatial data;
storage (in memory); using stored procedures; several text search
queries that require optimization by using the full text index and
pipelines aggregation. These criteria are classified by importance
from the highest to the lowest.

• First, to measure the importance of one criterion relative to
the others from the point of view of the company, we attribute
to each importance a weight (value), a max weight for the
highest and min for the lowest importance, in our case (Ta-
ble 3) we have assigned the weight 5 to the third criterion
(Pipeline aggregation), the weight 4 to the fourth criterion
(Stored procedure), the weight 3 to the fifth criterion (Full
text index), the weight 2 to the second criterion (Geospatial
data) and the weight 1 to the first criterion (In memory stor-
age).

• Second, we apply the formula 1, where A is our matrix of
DBMS and features, and C is our criteria vector to evaluate
the performance of each alternative (DBMS).

• Then, we sort the alternatives according to the maximum
WSM score and we choose the best one which has the maxi-
mum score (the maximum number of cases).

7. CASE STUDY
First to build our ontology, we used Protégé-OWL to design our

model. The latter is a widely used and well-known open-source
ontology edition. In addition, SPARQL query language has been
used.
Second, we instantiated 11 DBMSs in our ontology10 11 12 13 14 15
16 17 18 19 20 of different classes (Relational and NoSQL) with all
common and uncommon features. It is noted that the instantiation
of DBMSs is not an easy task because of the difficulty of finding
data sources detailing each DBMS, thus the complexity of func-
tioning the most popular DBMSs such as Oracle, MySQL, etc. and
the lack of detail for others.

Table 3: company/user criteria and their importance
Criterion C j Importance Weight w j

In memory storage Low 1
Geospatial data Medium 2
Pipeline aggregation +High 5
Stored procedure High 4
Full text index +Medium 3

10http://docs.oracle.com/
11https://www.mysql.fr/
12http://www.postgresql.org/
13http://www.mongodb.org/
14http://cassandra.apache.org/
15https://voltdb.com/
16http://redis.io/
17https://www.microsoft.com/fr-fr/server-cloud/products/sql-
server/

18http://neo4j.com/
19http://aws.amazon.com/fr/dynamodb/
20http://memcachedb.org/

Table 2 shows an extract of the instances of our ontology includ-
ing the following thirteens (13) features: INM (In memory), SCX
(Secondary index), CPX (Composite index), FTX (Full text index),
GSD (Geospatial Data), PTX (Partial index), MVW (Materialized
view), CMP (Compression), PIP (Pipelines), SPR (Stored proce-
dure), TRG (Trigger), MPR (Map Reduce) and REP (Replication).

We consider the same previous scenario with five criteria and
their weight (Table 3).

To complete the decision matrix (Table 2), we interrogate our
DBMS ontology using the SPARQL query language for each crite-
rion. Figures 11 and 12 show, respectively, the SPARQL queries of
In memory and Geospatial criteria. Then, we apply our proposal in
section 6.2 to this matrix as follows:

Figure 11: SPARQL Query for In memory criteria

First, we multiply each value of each column in Table 2 by its
weight (Multiplying a vector bu a scalar). For example, we multi-
ply the column PIP values by 5 (Pipelines weight), and we put the
results in a matrix A∗. Table 4 shows the matrix A∗ whose columns
have at least a non-zero value.
Second, we compute the values of each row (alternative or DBMS).
Finally, we rank the performance results (Table 5).

The result shows that the best alternatives are MySQL and Mon-
goDB (they have the maximum WSM score which is equal to 13).
Furthermore, the alternatives PostgreSQL and Oracle possesses the
same WSM score which is equal to 12 (Table 5).
We have presented our proposal to introduce mathematical tools
in DBMS selection process. Then, we showed a selection sce-
nario of a system according the expressed constraints. However,
this methodology depends on the knowledge base instances. The
lack of informations and details for DBMSs makes this process in-
complete. But we can conclude that our model responds perfectly
taking into account the instantiated systems. Finally, we note that
it is possible to choose a naive solution using SPARQL query. That
consists in relaxing the query of every empty result and then to
eliminate the lowest importance criteria. However, if we consider
a very high number (n) of criteria, the naive solution may lead to a
very large number of executions (≤ 2n).



Table 2: DBMS matrix and their features

Figure 12: SPARQL Query for Geospatial criterion

8. CONCLUSION
In this paper, we made a think tank about the problem of recom-

mending DBMS for companies to satisfy its requirements in terms
of technical features offered by DBMSs.
First of all, we have identified the limitations of existing ranking
DBMS systems. As a consequence, we proposed the usage of a
domain ontology to describe in consensual way all concepts and
properties of a given DBMS. This ontology represents a conceptual
pivot of DBMSs features. It has been validated by the members of
our Laboratory. We identified a similarity between our problem and
the one of multi-criteria decision making.

Table 4: Application of our proposal based on WSM

Therefore, our ontology has been exploited by the weight sum
model to offer companies their relevant DBMSs based on their re-
quirements expressed by a manifest [5].
A case study has thus been elaborated to show the effectiveness of
our finding, using the coupling between our ontology and the multi-
criteria decision making techniques. At the time, the problem of
selecting DBMS is solved by the experts in the field of databases,
because they know what different DBMSs can do and what features
are more important than others, but now their task is not easy be-
cause of the DBMS multiplicity.
So our proposal can not completely replace the experts’ work. More-
over, companies do not rely on the final decision of the preferred
DBMS to use only on the recommendation system and, therefore,
other criteria that must be taken into account such as the price and
the training proposed by the founder, etc. Also the opinion of the
experts is necessary at the last stage of this selection process.
Currently, we are exploiting the reasoning capabilities of ontologies
to substitute a DBMS by other ones offering equivalent features.



Table 5: Result of our proposal based on WSM

9. REFERENCES
[1] V. Abramova and J. Bernardino. Nosql databases: Mongodb

vs cassandra. In Proceedings of the International C*
Conference on Computer Science and Software Engineering,
pages 14–22. ACM, 2013.

[2] Y. Ait-Ameur, M. Baron, L. Bellatreche, S. Jean, and
E. Sardet. Ontologies in engineering: the ontodb/ontoql
platform. Soft Computing, pages 1–21, 2015.

[3] H. O. Alanazi, A. H. Abdullah, and M. Larbani. Dynamic
weighted sum multi-criteria decision making: Mathematical
model. International Journal of Mathematics and Statistics
Invention, 1:16–18, 2013.

[4] L. Bellatreche and A. Kerkad. Query interaction based
approach for horizontal data partitioning. IJDWM,
11(2):44–61, 2015.

[5] L. Brahimi, L. Bellatreche, and Y. Ouhammou. A
recommender system for DBMS selection based on a test
data repository. In ADBIS, pages 166–180, 2016.

[6] L. Brahimi, Y. Ouhammou, L. Bellatreche, and A. Ouared.
More transparency in testing results: Towards an open
collective knowledge base. In Tenth IEEE International
Conference on Research Challenges in Information Science,
RCIS 2016, Grenoble, France, June 1-3, 2016, pages 1–6,
2016.

[7] E. A. Brewer. Towards robust distributed systems (abstract).
In Proceedings of the Nineteenth Annual ACM Symposium
on Principles of Distributed Computing, July 16-19, 2000,
Portland, Oregon, USA., page 7, 2000.

[8] R. D. Burke. Hybrid recommender systems: Survey and
experiments. User Model. User-Adapt. Interact.,
12(4):331–370, 2002.

[9] R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD
Record, 39(4):12–27, 2010.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
ACM symposium on Cloud computing, pages 143–154, 2010.

[11] S. P. Coy. Security implications of the choice of distributed
database management system model: Relational vs.
object-oriented. In NISSC, volume 96, pages 428–437, 2008.

[12] I. Giurgiu, M. Botezatu, and D. Wiesmann. Comprehensible
models for reconfiguring enterprise relational databases to
avoid incidents. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge
Management, pages 1371–1380. ACM, 2015.

[13] V. N. Gudivada, D. Rao, and V. V. Raghavan. Nosql systems
for big data management. In IEEE World Congress on
Services, pages 190–197, 2014.

[14] F. Helff, L. Gruenwald, and L. d’Orazio. Weighted sum
model for multi-objective query optimization for
mobile-cloud database environments. In Proceedings of the
Workshops of the EDBT/ICDT 2016 Joint Conference,
EDBT/ICDT Workshops 2016, Bordeaux, France, March 15,
2016., 2016.

[15] A. Mardani, A. Jusoh, K. MD Nor, Z. Khalifah, N. Zakwan,
and A. Valipour. Multiple criteria decision-making
techniques and their applications–a review of the literature
from 2000 to 2014. Economic Research-Ekonomska
Istraživanja, 28(1):516–571, 2015.

[16] S. E. Middleton, N. Shadbolt, and D. D. Roure. Ontological
user profiling in recommender systems. ACM Trans. Inf.
Syst., 22(1):54–88, 2004.

[17] E. Redmond and J. R. Wilson. Seven databases in seven
weeks. The Pragmatic Bookshelf, 2012.

[18] F. Ricci, L. Rokach, and B. Shapira. Introduction to
recommender systems handbook. In Recommender Systems
Handbook, pages 1–35. 2011.

[19] M. Rosenmüller, C. Kästner, N. Siegmund, S. Sunkle,
S. Apel, T. Leich, and G. Saake. Sql á la carte-toward
tailor-made data management. In BTW, pages 117–136.
Citeseer, 2009.

[20] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero,
S. Apel, T. Leich, O. Spinczyk, and G. Saake. Fame-dbms:
tailor-made data management solutions for embedded
systems. In EDBT workshop on Software engineering for
tailor-made data management, pages 1–6. ACM, 2008.

[21] E. Triantaphyllou. Multi-criteria decision making methods.
In Multi-criteria Decision Making Methods: A Comparative
Study, pages 5–21. Springer, 2000.

[22] S. S. ur Rahman, V. Köppen, and G. Saake. Cellular dbms:
An attempt towards biologically-inspired data management.
JDIM, 8(2):117–124, 2010.


